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Abstract

We consider a new class of estimators for volatility functionals in the setting
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statistics extend the approach of pre-averaging as a general method for the es-
timation of integrated volatility in the presence of microstructure noise and are
closely related to the original concept of bipower variation in the no-noise case.
We show that this approach provides efficient estimators for arbitrary powers of
volatility and obtain as a by-product a simple test for the presence of jumps in
the underlying process.
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1 Introduction

The last years have seen a rapidly growing literature on the estimation of volatil-
ity in case of high frequency data. Starting from the representation of (log) price
processes as Itō diffusions, which are widely accepted as a reasonable model for
stock or currency prices, empirical research suggests that the true observations
are contaminated by microstructure noise, which collects deviations from the
true and the observed prices that are due to bid-ask spreads or round-off errors,
for example. These effects seem to have a huge impact on the performance of
the classical estimators in the pure diffusion case, which explains the need for a
general theory of the treatment of microstructure noise.

Throughout this paper we will focus on a general nonparametric setting, thus
the underlying diffusion process is characterised by the equation

Xt = X0 +

∫ t

0

as ds+

∫ t

0

σs dWs, (1.1)

whereas (as) denotes a predictable locally bounded drift and (σs) a càdlàg volatil-
ity process. Since we are dealing with high frequeny data, we assume the process
to live on a fixed time interval, [0,1] say. Our main quantity of interest is the
integrated volatility

∫ 1

0
σ2
sds, for which the realised variance is a natural estima-

tor in the case of non-noisy observations. See for example Andersen et al. [3]
or Barndorff-Nielsen and Shephard [6]. Microstructure noise is commonly mod-
elled as an additive error, which fulfills some moment conditions and essentially
behaves like a white noise process. However, a more general setting is possible
and was discussed in Jacod et al. [14].

It was shown in Zhang et al. [22] that the realised variance becomes incon-
sistent when dealing with microstructure noise, which started the search for new
methods to solve the problem of volalitity estimation in this context. Up to now,
there exist three approaches to this question. Zhang et al. [22] and Zhang [21]
used linear combinations of increments at different time lags to define a subsam-
pling estimator, whereas Barndorff-Nielsen et al. [5] proposed a kernel based
estimator, which essentially consists of a weighted sum of autocovariances. The
method of pre-averaging over small intervals was introduced in Podolskij and
Vetter [18] and to a first extent generalised in Jacod et al. [14]. Each approach
provides consistent estimators and achieves the optimal rate of convergence of
n−

1
4 in a stable limit theorem.
In this paper we propose a class of bipower-type estimators which are pre-
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averaged analogues of the realised bipower variation

BV (X, l, r)n = n
r+l
2
−1

n−1∑
i=1

|∆n
iX|l|∆n

i+1X|r, (1.2)

which was considered in Barndorff-Nielsen et al. [4]. This new class extends the
concept of modulated bipower variation as defined in Podolskij and Vetter [18]
in a natural way. We prove stochastic convergence and state joint central limit
theorems for the bipower-type estimators, both for any choice of non-negative
powers l and r.

As a by-product this approach solves the problem, how to test for jumps of
the process X in the presence of microstructure noise. The question, whether
the underlying price process has continuous paths as in (1.1) or exhibits jumps
and therefore should be defined as a realisation of a general semimartingale of
the form

Xt = X0 +B +Xc + κ ? (µ− ν) + κ′ ? µ, (1.3)

was in the no-noise case studied by Barndorff-Nielsen and Shephard [7] and
Ait-Sahalia and Jacod [1], among others. A precise definition of the processes
involved will be given later. In this setting we are able to construct a simple
estimator for the sum of squared jumps in the realisation of the process, which is
given by a linear combination of two bipower-type statistics with different powers
l and r. By means of a joint central limit theorem we obtain two simple tests for
the presence of jumps, both under the null hypothesis of no jumps.

This paper is organised as follows: In Section 2 we state the assumptions and
define the class of bipower-type statistics. Section 3 is devoted to the asymptotic
results, whereas Section 4 deals with their proofs.

2 Assumptions and definitions

We assume that the underlying continuous process X = (Xt)t is a diffusion
process as given in (1.1), which is defined on an appropriate filtered probability
space (Ω(0),F (0), (F (0)

t )t∈[0,1], P
(0)). As noted before, we assume further that the

process lives on the time interval [0,1].
Since we are dealing with microstructure noise we have to define a second pro-

cess Z = (Zt)t, which is somehow connected to the underlying Itō semimartingale
X. We restrict ourselves to the case of i.i.d. noise, which means that the observed
data are given by

Ztn,i = Xtn,i + Utn,i (2.1)
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at each observation time tn,i, where Ut, t ∈ [0, 1], is an i.i.d. noise process inde-
pendent of X with

E[Ut] = 0 and E[U2
t ] = ω2. (2.2)

Furthermore, we assume that for each n the observation times are given by
tn,i = i

n
, 0 ≤ i ≤ n.

In order to make both X and Z measurable with respect to the same kind
of filtration, we have to define a new probability space (Ω,F , (Ft)t, P ), which
accommodates both processes. To this end, we assume similarly to the setting in
Jacod et al. [14] that one has a second space (Ω(1),F (1), (F (1)

t )t∈[0,1], P
(1)), where

Ω(1) denotes R[0,1] and F (1) the product Borel-σ-field on Ω(1). Furthermore,
for any t ∈ [0, 1] we define Qt(ω

(0), dz) to be the probability measure, which
corresponds to the transition from Xt(ω

(0)) to the observed process Zt. In the
case of i.i.d. noise, this transition kernel is rather simple. We define at last
P (1)(ω(0), dω(1)) to be the product⊗t∈[0,1]Qt(ω

(0), ·). By construction, (Zt)t can be
regarded as the canonical process on (Ω(1),F (1), P (1)) with the natural filtration
given by F (1)

t = σ(Zs; s ≤ t). The filtered probability space (Ω,F , (Ft)t∈[0,1], P )

is then defined as

Ω = Ω(0) × Ω(1), F = F (0) ×F (1), Ft =
⋂
s>tF

(0)
s ×F (1)

s ,

P (dω(0), dω(1)) = P (0)(dω(0))P (1)(ω(0), dω(1)).

}
(2.3)

Remark 1 Note that this setting refers in view of Jacod et al. [14] only to a
special case of a noisy observation scheme. However, even in the more general
case presented therein the process Z exhibits a decomposition of the form

Zt = Xt + ht(ω
(0))Ut,

where conditionally on F (0) the Ut have mean zero and unit variance, and (Ut, Us)

are mutually independent for all t 6= s. This representation as well as the results
from Jacod et al. [14] indicate that main results from this paper may be derived
in the general setting as well.

Before we are able to define the class of bipower-type statistics BT (l, r)n we
have to introduce some further items and notations. First, we choose a sequence
kn of integers, for which a positive number θ satisfying

kn√
n

= θ + o(n−
1
4 ) (2.4)

exists, and a nonzero real-valued function g, which fulfills the following condi-
tions:
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(i) g vanishes outside of (0, 1)

(ii) g is continuous and piecewise C1

(iii) Its derivative g′ is piecewise Lipschitz.

We associate with g the following real valued numbers:

gni = g( i
kn

), ψ2 =
∫ 1

0
(g(s))2 ds, ψn2 = 1

kn

∑kn−1
i=1 (gni )2,

ψ1 =
∫ 1

0
(g′(s))2 ds, ψn1 = kn

∑kn−1
i=0 (gni+1 − gni )2.

}
(2.5)

Furthermore, for any process V = (Vt) we define the random variables

V n
i = V i

n
, ∆n

i V = V n
i − V n

i−1,

∆n
i V = V n

i+kn
− V n

i , V
n

i =
∑kn

j=1 g
n
j ∆n

i+jV.

}
(2.6)

Note that V n

i can be represented as

V
n

i =

∫ i+kn
n

i
n

gn(s− i

n
) dVs with gn(s) =

kn∑
j=1

gnj 1( j−1
n
, j
n

](s). (2.7)

For any process V and two arbitrary positive real numbers l and r the bipower-
type statistic BT (V, l, r)n is then defined as

BT (V, l, r)n = n
l+r
4
−1

n−2kn+1∑
i=0

|V n

i |l|V
n

i+kn|
r. (2.8)

If we simply write BT (l, r)n, we assume that we define this statistic with respect
to Z. At least one example for a bipower-type estimator has already been studied,
since in Jacod et al. [14] a slight modification of BT (2, 0)n was shown to be a
consistent estimator of the integrated volatility of the underlying process X.

This class of estimators generalises the approach of modulated bipower varia-
tion as proposed in Podolskij and Vetter [18] in a twofold manner: First, instead
of using the simple kernel function

g(x) = (x ∧ (1− x))+

we allow for different types of weights on the increments ∆n
i Z. Similarly to

Podolskij and Vetter [18] the choice of kn ensures that the stochastic orders of
X
n

i and U
n

i are balanced, which explains why characteristics of X and U will
both be present in the stochastic limit and the central limit theorem. Second, we
do not only sum up such statistics Zn

i , which are defined over non-overlapping
intervals of length kn

n
, but use all available statistics up to time 1 − 2kn

n
. This
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change does not affect the behaviour in the stochastic limit, but certainly it
increases the estimator’s efficiency.

A third generalisation towards multipower-type statistics, which can be de-
fined as sums of products of more than two adjacent pre-averaged statistics, will
not be derived in this paper. Inferences about these estimators can be obtained
by extensions of the following results in a straightforward way.

Occasionally, we assume X to be a general semimartingale as defined in (1.3).
Its representation is then defined as in Jacod and Shiryaev [16]: µ denotes a jump
measure and ν its predictable time compensator, whereas integrals of optional
functions V with respect to a random measure µ are denoted by V ? µ. κ is
assumed to be a fixed truncation function, which is continuous, has compact
support and coincides with the identity on a neighbourhood of zero. κ′ is defined
via κ′(x) = x− κ(x). Moreover, Xc denotes the continuous martingale part and
(B,C, ν) with C =< Xc, Xc > are the predictable characteristics of X.

3 Asymptotic theory

In this section we study the asymptotic behaviour of the class of bipower-type
estimators BT (l, r)n, l, r ≥ 0. In the pure diffusion case we obtain stochastic
convergence for each choice of l and r under mild assumptions, since apart from
a moment condition on the noise process U no further assumptions on Z are
needed. In order to prove a central limit theorem we have to modify the setting
slighty, but are still able to derive results for a large class of volatility processes.
In the semimartingale framework we will restrict ourselves to less general choices
of l and r.

3.1 Consistency

We start with the statement of the stochastic limit in case X is a continuous Itō
diffusion as defined in (1.1).

Theorem 1 Assume that E|U |2(l+r)+ε <∞ for some ε > 0 and let µr denote the
r-th absolute moment of a standard normal distribution. Then the convergence
in probability

BT (l, r)n
P−→ BT (l, r) = µlµr

∫ 1

0

(θψ2σ
2
u +

1

θ
ψ1ω

2)
l+r
2 du (3.1)

holds.
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The moment condition on U is crucial to replace the moments of Un

i by the
corresponding moments of a standard normal distribution which only depend on
ω2.

Remark 2 Theorem 1 indicates that the class of bipower-type estimators is in-
consistent for any integrated power of volatility. However, when l+ r is an even
number, a modification of BT (l, r)n similar to the one in Podolskij and Vetter
[18] turns out to be consistent. This can be illustrated as follows: Since

ω̂2 =
1

2n

n∑
i=1

|∆n
i Z|2 (3.2)

is a constistent estimator for ω2 (see e.g. Zhang et al. [22]), one obtains con-
sistent estimators for integrated powers of volatility, as long as one is able to
estimate and substract the bias due to ω2 in the stochastic limit BT (l, r). When
l+r
2

is an integer, this is of course a simple application of the binomial theorem.
The special case of BT (2, 0)n has already been treated in Jacod et al. [14], where

Ĉn =
1

θψ2

BT (2, 0)n −
ψ1

θ2ψ2

ω̂2 P−→
∫ 1

0

σ2
s ds (3.3)

was introduced as an estimator of the integrated volatility.

However, if X is supposed to be a general semimartingale of the form (1.3)
admitting jumps, Theorem 1 does not hold anymore. Nevertheless, in the spirit
of Jacod [12] it should be possible to show stochastic convergence of BT (l, r)n

(or a rescaled version), where the limit depends both on the choice of l and r and
on additional assumptions on the processes involved. Since the general theory
is beyond the scope of this paper, we restrict ourselves to some special cases,
in which we need an additional assumption on the characteristics of X, which
ensures that its drift and its continuous martingale part are given by an Itō dif-
fusion. Furthermore, a certain structure on the compensator ν is imposed.

(H): The characteristics (B,C, ν) of the semimartingale X are as follows:

Bt =

∫ t

0

as ds, Ct =

∫ t

0

σ2
s ds, ν(dt, dx) = dt Ft(dx),

whereas the processes (as) and (Fs(Φ2)) are locally bounded and predictable.
Here, Fs(f) denotes the integral

∫
f(x) Fs(dx) and

Φr(x) = 1 ∧ |x|r,
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r > 0. Moreover, (σs) is assumed to be càdlàg.

This condition is the same condition as in Jacod [12]. It implies that Xt can
be represented in the following way:

Xt = X0 +

∫ t

0

as ds+

∫ t

0

σs dWs (3.4)

+

∫ t

0

∫
R
κ ◦ δ(s, x)(µ− ν) (ds, dx) +

∫ t

0

∫
R
κ′ ◦ δ(s, x) µ(ds, dx),

where µ is a Poisson random measure on R+×R with its compensator ν(dt, dx) =

dt× dx. δ is a function from Ω×R+ ×R to R, such that Ft(ω, dx) is the image
of dx under the mapping x 7→ δ(ω, s, x).

We can now state a result about the stochastic convergence of BT (l, r)n in
the general semimartingale context.

Theorem 2 Assume that the underlying process X is given by (1.3) and that
both (H) and the conditions on U from Theorem 1 are fulfilled. Then

(i)

BT (2, 0)n
P−→
∫ 1

0

θψ2σ
2
u du+ θψ2

∑
s≤1

|∆Xs|2 +
1

θ
ψ1ω

2. (3.5)

(ii) If l∨ r < 2 then BT (l, r)n is robust to jumps, i.e. it converges in probalility
to BT (l, r) as given in (3.1).

We conclude easily that

1

θψ2

BT (2, 0)n −
ψ1

θ2ψ2

ω̂2

is a consistent estimator for

[X,X]1 =

∫ 1

0

σ2
sds+

∑
s≤1

|∆Xs|2,

which is the quadratic variation of the process X at time 1. Moreover, we have

BTV − n = BT (2, 0)n − µ−2
1 BT (1, 1)n

P−→ θψ2

∑
s≤1

|∆Xs|2. (3.6)

Therefore, a slight modification of BTVn quantifies the part of the quadratic
variation, which is due to jumps. Based on this statistic we will in the following
derive feasible tests for the presence of jumps in the latent process X. As second
test will be based on the ratio of BT (2, 0)n and BT (1, 1)n.
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Statistics like BTVn are somewhat similar to the ones obtained by applying
the original concept of bipower variation, which serves as an alternative method
for the estimation of the integrated volatility in the presence of jumps, when no
market microstructure noise is present.

3.2 Central limit theorems

In this paragraph we present a central limit theorem for a normalised version of
BT (l, r)n, where X is given by (1.1), i.e. having continuous paths, for the first
part of this section. As mentioned before, further assumptions on the process Z
are required. At first, we need two structural assumptions on the volatility pro-
cess σ, which are already known to be required for the proof of the central limit
theorem for bipower variation in the no-noise-case, but were also used to derive a
central limit theorem for modulated bipower variation (see e.g. Barndorff-Nielsen
et al. [4] or Podolskij and Vetter [18]).

(V): The process σ satisfies the equation

σt = σ0 +

∫ t

0

a′s ds+

∫ t

0

σ′s dWs +

∫ t

0

v′s dVs. (3.7)

Here a′, σ′ and v′ are adapted càdlàg processes, with a′ also being predictable
and locally bounded, and V is a second Brownian motion, independent of W .

(V’): The process σ2 is greater than zero.

Assumption (V) is fulfilled in many widely used financial models (see Black
and Scholes [8], Vasicek [20], Cox et al. [10] or Chan et al. [9] among others),
since whenever X is a unique strong solution of a stochastic differential equation
with a volatility function σt = σ(t,Xt) being smooth enough, condition (V) with
v′s = 0 holds as a simple consequence of Itō’s formula.

The assumptions on the noise process U are less restrictive than in Podolskij
and Vetter [18], where it was assumed that U follows a normal distribution.

(A): For the noise variables U we have the following conditions:

(i) U is distributed symmetrically around zero.
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(ii) For any 0 > a > −1 we have E[|U |a] <∞.

(A’): Cramer’s condition is fulfilled, that is lim sup|t|→∞ χ(t) < 1, where χ
denotes the characteristic function of U .

The first condition is of fundamental importance, if at least one of the powers
l and r is smaller than one. In this case the corresponding central limit theorem
for the classical bipower variation relies on the fact that the normal distribution
satisfies both properties from (A). We will see later that for our purposes one
has to proceed in a similar way, which explains this additional assumption on
the noise process. (A’) will be used in order to remove the intrinsic bias in the
pre-averaged statistic |Zn

i |l, when the power l is not an even number. Typically
we replace the moments of |n 1

4U
n

i |l by the corresponding moments of a normal
distribution. The error due to this replacement can be controlled by an expansion
of Edgeworth-type, for which (A’) is a standard assumption. As in the previous
section, we need an additional moment condition on U as well, depending on the
choice of l and r.

All central limit theorems stated below will make use of the concept of stable
convergence of random variables. Let us shortly recall the definition. A sequence
of random variables Gn is said to converge stably in law with limit G (throughout
this paper we write Gn

Dst−→ G), defined on an appropriate extension (Ω′,F ′, P ′)
of a probability space (Ω,F , P ), if and only if for any F -measurable and bounded
random variable H and any bounded and continuous function f the convergence

lim
n→∞

E[Hf(Gn)] = E[Hf(G)]

holds. This is obviously a slightly stronger mode of convergence than convergence
in law (see Renyi [19] or Aldous and Eagleson [2] for more details on stable
convergence).

Since we want to use BTVn as defined in (3.6) to establish a test for the
presence of jumps in the underlying semimartingale, we state a central limit
theorem for 2-dimensional arrays of bipower-type statistics. Therefore, we fix
non-negative numbers l1, r1, l2, r2 and set

ξ1
n = BT (l1, r1)n −BT (l1, r1), (3.8)

ξ2
n = BT (l2, r2)n −BT (l2, r2), (3.9)

ξn = (ξ1
n, ξ

2
n). (3.10)
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Before we proceed with the central limit theorem for ξn, we have to introduce
some further notation. We define

hij(x, y, z) = Cov(|H1|li |H2|ri , |H3|lj |H4|rj), (3.11)

where x is a real number, y and z are a two- and four-dimensional vector, re-
spectively, and (H1, . . . , H4) follows a normal distribution with

(i) E[Hl] = 0 and E[|Hl|2] = y1x
2 + y2ω

2.

(ii) H1⊥H2, H1⊥H4 and H3⊥H4.

(iii)
Cov(H1, H3) = Cov(H2, H4) = z1x

2 + z2ω
2

and
Cov(H2, H3) = z3x

2 + z4ω
2.

Each hij can in principle be computed, but the calculations become rather com-
plicated, except for special cases.

Moreover, we set t = (θψ2,
1
θ
ψ1) and define the functions

f1(s) = θ

∫ 1−s

0

g(r)g(r + s) dr, f2(s) =
1

θ

∫ 1−s

0

g′(r)g′(r + s) dr,

f3(s) = θ

∫ 2−s

0

g(r)g(r + s− 1) dr, f4(s) =
1

θ

∫ 2−s

0

g′(r)g′(r + s− 1) dr

for s ∈ [0, 2]. Note that both f1 and f2 are 0 for s ∈ [1, 2], according to the
assumptions on g.

The conditional variance in the following limit theorem depends on the func-
tions hij introduced above and will therefore not be computed explicitly. Never-
theless, we will explain afterwards, how it can be estimated consistently. This is
sufficient to derive feasible tests.

Theorem 3 Let l1, r1, l2 and r2 be four positive real numbers and let X be given
by (1.1). We further assume (V) and (A), and impose additionally that U fulfills
E[|U |s+ε] <∞ for some s ≥ (3 ∧ 2(r1 + l1) ∧ 2(r2 + l2)) and some ε > 0. If any
li or ri is in (0,1], we postulate (V’) as well, otherwise either (V’) or (A’).

Then
n

1
4 ξn

Dst−→ V (l1, r1, l2, r2),

where the limiting process is given by

V (l1, r1, l2, r2) =

∫ 1

0

vl1,r1,l2,r2(σu) dW
′
u. (3.12)

10
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Here W ′ denotes a 2-dimensional standard Brownian motion, which is defined on
an extension of the filtered probability space (Ω,F , (Ft)t, P ) and is independent
of the σ-field F . The conditional variance of the limiting process is given by∫ 1

0

vtl1,r1,l2,r2vl1,r1,l2,r2 (σu) du =

∫ 1

0

(
wl1,r1,l2,r211 wl1,r1,l2,r212

wl1,r1,l2,r212 wl1,r1,l2,r222

)
(σu) du,

where

wl1,r1,l2,r2ij (σu) = 2θ

∫ 2

0

hij(σu, t, f(s)) ds.

In the following we will drop the arguments indicating the dependence of v
and wij on the choice of l1, r1, l2 and r2 for notational convenience.

Remark 3 Some of the assumptions can be relaxed, if all powers are even num-
bers. In particular, apart from the moment condition of U we only have to
postulate condition (V). This is due to the fact that even moments of the pre-
averaged noise process can be computed explicitly. One can see easily that these
moments converge to the corresponding ones of a standard normal distribution
fast enough.

Remark 4 A nice way to quantify the quality of estimators like Ĉn in contrast
to their modulated bipower analogues is to have a look at its performance in a
special setting. Suppose that the latent process is given by

Xt = σWt

for some positive constant σ > 0. It is well-known from Gloter and Jacod [11]
that one has an efficient parametric bound for the asymptotic variance of any
estimator for σ2, namely 8σ3ω. It was shown in Jacod et al. [14] that in this
special case one can calculate the conditional variance in Theorem 3 explicitly
and obtains for the (probably most natural) weight function

g(x) = (x ∧ (1− x))+

an optimal bound, which is roughly 8.5σ3ω. This is not only rather close to the
optimal bound, but also a huge improvement, since the related estimator discussed
in Podolskij and Vetter [18] has an optimal variance of about 20σ3ω.

As mentioned earlier, we are able to estimate each entry
∫ 1

0
wij(σu) du of the

conditional covariance matrix. To this end, we fix i and j and choose some real
number $ ∈ (0, 1

4
). Moreover, we define

Z̃n
m,i = n

li+ri
4
− 1

2 |Zn

m|li1{|Znm|<n−$}|Z
n

m+kn|
ri1{|Znm+kn

|<n−$}

11
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as well as

χ̂nm,l =
1

2

(
Z̃n
m,i

(
Z̃n
m+l,j − Z̃n

m+2kn,j

)
+ Z̃n

m,j

(
Z̃n
m+l,i − Z̃n

m+2kn,i

))
,

for any 0 ≤ m ≤ n− 4kn + 1 and 1 ≤ l < 2kn.
Note that the truncation in the definition of Z̃n

m,i is necessary in order to
obtain an estimator for the variance in the central limit theorem, which is robust
in the presence of jumps. It could be removed, if one wants to establish a feasible
result only in model (1.1).

Lemma 1 If all conditions from Theorem 3 hold true and if U further satisfies
E[|U |s′+ε′ ] <∞ for s′ = max(li,ri,lj ,rj)

4( 1
4
−$)

and some ε′ > 0, then the statistic

ŵnij =
2

n
1
2

n−4kn+1∑
m=0

2kn−1∑
l=0

χ̂nm,l

converges in probability to
∫ 1

0
wij(σu) du, both in model (1.1) and in model (1.3),

as long as condition (H) is satisfied.

Remark 5 The moment condition on U in Lemma 1 is necessary to ensure that
the probability of n

1
4 |Un

i | exceeding some threshold of the form n
1
4
−$ becomes

sufficiently small. An alternative approach could involve less moments, but the
additional assumption (A’) in order to perform a similar type of Edgeworth ex-
pansion as in Theorem 3.

To derive a test for jumps we have to specify the hypotheses first. Note that
even if the processX allows in principle for jumps, the realised path s 7→ Xs(ω

(0))

does not have to have jumps at all. Obviously, in this case there is no way to tell
whether the process comes from model (1.1) or from model (1.3), since we are
just able to distinguish between continuous and discontinuous paths of X. We
therefore partition the set Ω into the following two subsets

Ωc = Ω(0)
c × Ω(1) and Ωd = Ω

(0)
d × Ω(1)

with

Ω(0)
c = {ω(0) : s 7→ Xs(ω

(0)) is continuous on [0, 1]},

Ω
(0)
d = {ω(0) : s 7→ Xs(ω

(0)) is discontinuous on [0, 1]}.

Exploiting the properties of stable convergence, we are now in a position to
derive a test for jumps in the underlying process X, since we know from Lemma

12
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1 how to estimate the conditional variance of the limiting process V in Theorem
3. Recall BTVn from (3.6), which converges to a stricly positive quantity in the
presence of jumps. If we choose l1 = 2, r1 = 0 and l2 = r2 = 1, we obtain the
representation

BTVn = ξ1
n − µ−2

1 ξ2
n.

Under the null hypothesis of no jumps, this statistic converges stably to a mixed
normally distributed limit with mean zero and a conditional variance

τ 2 =

∫ 1

0

d2(σu) du,

where d2 is given by

d2 =
(

1 −µ−2
1

)(w11 w12

w12 w22

)(
1

−µ−2
1

)
= (w11 − 2µ−2

1 w12 + µ−4
1 w22).

Since we are able to estimate each
∫ 1

0
wpq(σu) du by ŵpq, we have a natural

estimator τ̂ 2
n for τ 2 as well. We conclude from the properties of stable convergence

that the standardised statistic

Sn = n
1
4
BTVn
τ̂n

(3.13)

converges stably to a standard normal distribution as a consequence of the gen-
eralised delta method.

We denote with uα the α-quantile of a standard normal distribution and define

Ln(α) = {Sn > u1−α}.

We obtain for the null hypothesis H0 : ω ∈ Ω
(0)
c the following theorem:

Theorem 4 Assume that the conditions from Theorem 3 and Lemma 1 hold
true. Then the test defined by

ϕ1(ω) =

1, ω ∈ Ln(α)

0, ω /∈ Ln(α)

fulfills

lim
n→∞

P (ϕ1(ω) = 1|Ωc) = α

in model (1.1), for any choice of the functions a, σ and δ, and has therefore the
asymptotic level α. Moreover, it is consistent, since

lim
n→∞

P (ϕ1(ω) = 1|Ωd) = 1

holds in model (1.3) and under (H) as a result of Theorem 2 and Lemma 1, again
for any choice of a, σ and δ with P (Ωd) > 0.

13
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This result can be proven in the same way as Theorem 6 in Ait-Sahalia and Jacod
[1], where it was shown that the asymptotic behaviour of Itō diffusions and of
Itō semimartingales without jumps is essentially the same.

A second test can be based on the ratio of the two bipower-type statistics

1

θψ2

BT (2, 0)n and
µ−2

1

θψ2

BT (1, 1)n.

Since under the null hypothesis both statistics converge to the same quantity, its
ratio

BTRn =
BT (2, 0)n

µ−2
1 BT (1, 1)n

goes to one. Again with the aid of the generalised delta method, we conclude
that

n
1
4 (BTRn − 1)

Dst−→MN(0, υ2)

with

υ2 =

∫ 1

0

1

BT (1, 1)2
(µ4

1w11 − 2µ2
1w12 + w22)(σu) du.

By the same arguments as above we obtain a consistent estimator υ̂2 for υ2 as
well. Therefore

T n = n
1
4

(BTRn − 1)

υ̂n

D−→ N(0, 1),

and the following theorem can be derived easily.

Theorem 5 Let

Jn(α) = {T n > u1−α}.

Under the assumptions from Theorem 4 the test defined by

ϕ2(ω) =

1, ω ∈ Jn(α)

0, ω /∈ Jn(α)

has the asymptotic level α and is consistent as well.

We conclude this section with a second proposition on the asymptotic be-
haviour of bipower-type statistics in the general framework of (1.3). As in the
case of stochastic convergence we will only show that the proposition from Theo-
rem 3 holds under the presence of jumps as well, provided that the powers l and

14
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r are small enough. We will prove this result in the one-dimensional case only,
since the extension to the bivariate setting is straightforward.

Before we can proceed with the statement of the result we need an additional
condition on the semimartingale X, which is well-known from Jacod [12] as well.

(L-q): We have (H) and the process δ(s, x) is predictable and left continu-
ous with right limits. Moreover, there exists a family of functions γk(x) and a
sequence of stopping times Tk converging to infinity almost surely such that

|δ(s, x)| ≤ γk(x) for all s ≤ Tk

and ∫
R

Φq(γk(x)) dx <∞

with q ∈ [0, 2], any k, hold.

Note that (L-q) implies (L-r), whenever q ≤ r ≤ 2. The following claim is
closely related to Theorem 6.2 in Jacod [13] in the no-noise case.

Theorem 6 Let X be given by (1.3) and assume that (L-q) as well as (V), (V’)
and (A) are satisfied. If further q

2−q < l1, r1 < 1 and E[|U |s+ε] < ∞ for some
s ≥ (3∧ 2(r1 + l1)) and some ε > 0, then the stable convergence from Theorem 3
holds in the univariate setting, that is l2 = r2 = 0.

4 Appendix

In the following we assume without loss of generality that a and σ as well as a′,
σ′, v′ and Ft(Ψ2) are bounded, which can be justified by a standard localisation
procedure as explained in Barndorff-Nielsen et al. [4] and Jacod [12]. By the
same arguments we can also replace the functions γk in condition (L-q) by a
bounded function γ. Constants appearing in the proofs are usually denoted by
C and may be dependent on the bounds of the various processes in (1.1), (1.3)
and (3.7). We write Cp, if these constants depend on an additional parameter p.

Main parts of the proofs will base upon the concepts and calculations pre-
sented in Podolskij and Vetter [18], hence we will refer to details illustrated
therein quite often. Nevertheless, the proof of Theorem 3 is much more involved,
due to the strong correlation between the summands in (2.8).

We show first that replacing ψn1 and ψn2 defined in (2.5) by its limits ψ1 and
ψ2 does not affect both the consistency statement and the central limit theorem.

15
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Lemma 2 It holds∫ 1

0

(θψn2σ
2
u +

1

θ
ψn1ω

2)q du−
∫ 1

0

(θψ2σ
2
u +

1

θ
ψ1ω

2)q du = op(n
− 1

4 )

for all r, l ≥ 0.

Proof of Lemma 2 Using the mean value theorem and the boundedness of σ
one obtains the result, if both

ψ1 − ψn1 = o(n−
1
4 ) and ψ2 − ψn2 = o(n−

1
4 )

can be shown. The first proposition follows from

ψn1 = kn

kn−1∑
i=0

(gni+1 − gni )2 =
1

kn

kn−1∑
i=0

(g′(ξi))
2 for some ξi ∈

[ i
kn
,
i+ 1

kn

]
=

∫ 1

0

(g′(x))2 dx+O(
1

kn
) = ψ1 + o(n−

1
4 ),

using (2.4) and the approximation error of a Riemann sum, since g′ was assumed
to be piecewise Lipschitz. The second assertion can be proven analogously. �

Prior to proving the stochastic convergence of the statistic BT (l, r)n, note
that it can be represented in the following way:

BT (l, r)n = n−
1
2

kn∑
m=1

MBV (l, r)nm,

where MBV (l, r)nm is given by

MBV (l, r)nm = n
l+r
4
− 1

2

b nkn c−1∑
i=1

|Zn

ikn+m|l|Z
n

(i+1)kn+m|r. (4.1)

Each of these new statistics turns out to be a slight generalisation of the mod-
ulated bipower estimators as proposed in Podolskij and Vetter [18]. Therefore,
Theorem 1 follows from the following proposition, which proves consistency of
all quantites MBV (l, r)nm in a uniform way.

Lemma 3 There exists a sequence of random variables γn converging to zero in
probability, for which

MBV (l, r)nm −
1

θ
BT (l, r) ≤ γn (4.2)

holds for all m ≤ kn.

16
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Proof of Lemma 3 This proposition can be reduced to Lemma 2 and the corre-
sponding assertion in Podolskij and Vetter [18], up to some minor changes. The
crucial step in the proof of Theorem 1 therein is to assure that n

1
4U

n

i converges
weakly to a normal distribution; however, this follows in our context, since Lin-
deberg’s condition is satisfied due to the assumptions on g. Uniform convergence
can be obtained, since the convergence to zero of any statistic MBV (l, r)nm is
obtained by the fact that σ is supposed to be bounded and càdlàg, regardless of
m. �

Proof of Theorem 2
The first part of this theorem is shown in Theorem 3.2 in Jacod et al. [15]. For
the second proposition observe that up to the choice of κ the semimartingale X
can be written as follows:

Xt = X0 +Qt +N(ε)t +M(ε)t +B(ε)t, (4.3)

for any ε ∈ (0, s], s small enough. The auxiliary processes are defined as

N(ε)t = (x1{|x|>ε}) ? µt, M(ε)t = (x1{|x|≤ε}) ? (µt − νt), (4.4)

B(ε)t = Bt − (κ(x)1{|x|>ε}) ? νt, Qt =

∫ t

0

σs dWs. (4.5)

We set further

Z ′t = X0 +Qt + Ut and Z ′′t = N(ε)t +M(ε)t +B(ε)t.

We already know from Theorem 1 that BT (Z ′, r, l)n converges in probability to
BT (r, l), which forces us to prove

E[|BT (Z, r, l)n −BT (Z ′, r, l)n|]→ 0.

We have

BT (Z, r, l)n −BT (Z ′, r, l)n =
n−2kn+1∑

i=0

n
l+r
4
−1ρni

with

ρni = |Zn

i |l
(
|Zn

i+kn|
r − |Z ′ni+kn|

r
)

+ |Z ′ni+kn|
r
(
|Zn

i |l − |Z ′
n

i |l
)
.

Recall (2.7). Since

E[|Z ′ni |q|F i
n
] ≤ Cqn

− q
4

17
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for any positive q such that E[|U |q] <∞ and

E[|Z ′′ni |q|F i
n
] ≤ Cqn

− q
4

for all 0 < q ≤ 2 and by taking successive conditional expectations, it suffices to
show that

sup
i
n
q
4E
[∣∣∣|Zn

i |q − |Z ′
n

i |q
∣∣∣|F i

n

]
≤ αn

for some deterministic sequence αn converging to zero and all 0 < q < 2. How-
ever, it has been shown in the proof of equation (15) in Ait-Sahalia and Jacod
[1] that this property follows from

E[|Z ′′ni |2 ∧ n−
1
2 |F i

n
] ≤ n−

1
2βn (4.6)

for another deterministic sequence βn, which goes to zero. In order to prove (4.6)
we define

αni (y) = E[

∫ i+kn
n

i
n

∫
{|x|≤y}

Φ2(x) Ft(dx) dt],

which is bounded due to the condition on Ft(Φ2) stated in (H). Let us now study
the impact of the last three summands in (4.3). Again by (2.7) we have

M(ε)
n

i ≤ C

∫ i+kn
n

i
n

dM(ε)s = C∆n
iM(ε),

and a similar result holds for N(ε) and B(ε). Therefore, these quanitites can
be treated as increments of processes over small intervals, whose properties have
already been studied in the proof of Lemma 4.1 in Jacod [12]. We conclude from
the observations therein that the following two inequalities are valid

E[|M(ε)
n

i |
2] ≤ Cαni (ε) and |B(ε)

n

i | ≤ C
kn
nε
.

Moreover, we can prove

P (∆n
iN(ε) 6= 0) ≤ Cε−2n−

1
2 (4.7)

analogously to the related statement in Jacod [12] as well. Therefore, we can
conclude along the lines of Lemma 5.12 in the same paper that

E[|Z ′′ni |2 ∧ η2|F i
n
] ≤ Cn−

1
2

(η2 + n−
1
2

δ2
+ Γ(δ)

)
holds for all η > 0 and ε ∈ (0, 1), and with Γ(δ)→ 0 as δ → 0. This finishes the
proof of (4.6), and Theorem 2 follows. �
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Before we come to the proof of Theorem 3, we introduce an auxiliary result
on Edgeworth-type expansions for triangular arrays of random variables Xn,i,
where the Xn,i are independent, but not identically distributed. Recall first that
the ν-th cumulant κν of a random variable X is defined to be the coefficient of
1
ν!

(it)ν in a power series expansion of the cumulant generating function log(χ(t)),
that is

log(χ(t)) =
∞∑
l=0

1

l!
κl(it)

l,

provided such a series exists, at least up to order ν. In the case of a triangular
array, each Xn,i has different cumulants κν,n,i, which makes standard results on
Edgeworth expansions unavailable. Nevertheless, we will state a result closely
related to a theorem in Lahiri [17], for which we need some additional notation.

Consider a series of real constants (γi). We then define for any integer s the
formal polynomial

P̃s(z : (γi)) =
s∑

m=1

1

m!
(

∗∑
j1,...,jm

m∏
i=1

γji+2)z2m+s,

where
∑∗

j1,...,jm
denotes the sum over all m-tupels of positive integers j1, . . . , jm

with
m∑
i=1

ji = s

and an empty sum is defined to be 1. We see easily that the coefficients only
involve such γi with i ≤ s+ 2. Moreover, P̃s is even, if and only if s is even. We
set further

Ps(−ϕ : (γi)) = P̃s(−D : (γi)) ϕ,

where D is the differential operator, applied to the normal density ϕ. At last,
we define Ps(−Φ : (γi)) to be the signed measure on R, whose density is given
by Ps(−ϕ : (γi)). As usual, PX denotes the distribution of a random variable X.

By definition, P0(−Φ : (γi)) is Φ itself, whereas any other measure Ps(−Φ :

(γi)) has an even density for even s and an odd density for odd s. The following
Lemma is a refinement of Theorem 6.1 in Lahiri [17], which can be proven in the
same way as Theorem 6.2 therein.
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Lemma 4 Let (Xn,j) be a triangular array of row-wise independent real-valued
random variables Xn,1, . . . , Xn,n with zero mean and 1

n

∑n
j=1 E[X2

n,j] = 1 for each
n. Suppose further that the following conditions are satisfied for some integer
s ≥ 3 and some δ ∈ (0, 1

2
):

(i) limn→∞ n
−1
∑n

j=1 E[|Xn,j|s 1
{|Xn,j |>n

1
2−δ}

] = 0.

(ii) lim supn→∞ ρ̄n,s <∞ with ρ̄n,s = 1
n

∑n
j=1E[|Xn,j|s].

(iii) For some positive sequence (ηn) with ηn = o(n−
s−2
2 ) we have

lim sup
n→∞

sup{|χjn(t)|; 16(ρ̄n,3)−1 ≤ |t| ≤ η−4
n , j = 1, . . . , n} < 1,

where χjn denotes the characteristic function of Xn,j.

Then for every real-valued, Borel-measurable function f satisfying

Ms(f) = sup
x∈R

(1 + |x|2b
s
2c)−1|f(x)| <∞

we have∣∣∣ ∫ f d
(
P Sn −

s−2∑
r=0

n−
r
2Pr(−Φ : (κ̄ν,n))

)∣∣∣ ≤ C Ms(f) δn + Cs ω̄(2ηn; f,Φ), (4.8)

where Sn = n−
1
2

∑n
j=1 Xn,j, κ̄ν,n is the average ν-th cumulant of Xn,j for j =

1, . . . , n, C and Cs are suitable constants, δn = o(n−
s−2
2 ) and

ω̄(ε; f,Φ) =

∫
ωf (ε, x) ϕ(x) dx, ωf (ε, x) = sup

y,z∈(x−ε,x+ε)

|f(y)− f(z)|.

(4.8) holds uniformly over a class of triangular arrays, as long as the conditions
(i) - (iii) hold uniformly as well.

Note that the existence of the s-th moment implies that all cumulants up to
order s exist as well. Therefore, any Pr(−Φ : (κ̄ν,n)) is well-defined for r ≤ s− 2.

Lemma 4 can be used to prove that the error due to the approximation
of moments of pre-averaged statistics by the corresponding ones of a normal
distribution is of a smaller order than n−

1
4 . Let us first introduce some further

notation. We define the class of random variables

Y
n

i,m =
kn−1∑
j=1

gnj (σm
n

∆n
i+jW + ∆n

i+jU), (4.9)

with m ≤ i and the convention Y n

i = Y
n

i,i. These quantities are approximations
for the random variable Zn

i , since we exchanged the increments of X over small
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intervals by the associated increments of the underlying Brownian motion W

times σ evaluated at some time point m
n
. Moreover, we set

ηni = n
l1+r1

4 |Y n

i |l|Y
n

i+kn,i|
r (4.10)

for arbitrary non-negative powers l and r.

Lemma 5 Let X be given by (1.1) and assume that U satisfies condition (A) as
well as E[|U |s+ε] <∞ for some s ≥ (3∧ 2(r+ l)) and some ε > 0. Moreover, we
have either (V’) or (A’). Then

E[ηni |F i
n
] = µrµl(σ

2
i
n
θψ2 +

1

θ
ψ1ω

2)
l+r
2 + op(n

− 1
4 ), (4.11)

uniformly in i.

Proof of Lemma 5 Note first that without loss of generality is suffices to prove
the result in the case r = 0, since Y n

i and Y n

i+kn are conditionally independent.
We set f(x) = |x|l and find that

E[ηni |F i
n
] =

∫
f dPU ′i,n ,

where

U ′i,n = n
1
4

kn∑
j=1

( 1√
n
σ i
n
gnjNi+j + (gnj−1 − gnj )Ui+j

)
=: kn

− 1
2

kn∑
j=1

Γni+j,

σ i
n

can be treated as a non-random quantity and the Nl are i.i.d. standard
normal variables. By definition, U ′i,n has mean zero and a variance of

τ 2
i,n = σ2

i
n

kn

n
1
2

ψn2 +
n

1
2

kn
ψn1ω

2,

which converges to σ2
i
n

θψ2 + 1
θ
ψ1ω

2 for any fixed i. Therefore (4.11) follows from
a similar argument as in the proof of Lemma 2, once we have proven that∣∣∣ ∫ f d(PU ′i,n − Φ)

∣∣∣ = o(n−
1
4 ), (4.12)

uniformly in i, where U ′i,n =
U ′i,n
τi,n

is a standardised sum with mean zero and unit
variance.

Let us first add some comments on Lemma 4. For the choice of f as above,
a simple calculation shows that

ω̄(ε; f,Φ) = O(ε).
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We conclude that whenever Lemma 4 holds,∣∣∣ ∫ f d
(
P Sn −

s−2∑
r=0

n−
r
2Pr(−Φ : (κ̄ν,n))

)∣∣∣ = o(n−
s−2
2 )

follows for such a function f , provided the conditions s ≥ 3 and
⌊
s
2

⌋
≥ l

2
are

satisfied.
For our purposes it is sufficient to use the expansion to first order. If we

assume that the conditions for an application of Lemma 4 are satisfied for an
integer s as specified in Lemma 5, we can conclude∣∣∣ ∫ f d

(
PU ′i,n − Φ− kn−

1
2P1(−Φ : (κ̄1,i,n))

)∣∣∣ = o(kn
− 1

2 ) = o(n−
1
4 ),

where κ̄ν,i,n denotes the average ν-th cumulant of Γni+j
τi,n

, j ≤ kn. Since P1(−Φ :

(κ̄1,i,n)) has an odd density and f is an even function, we have∫
f dP1(−Φ : (κ̄1,i,n)) = 0

and (4.12) follows. We are therefore left to prove that the assumptions (i)− (iii)

on U ′i,n are fulfilled, uniformly in i.
(i) and (ii) follow easily from an application of Hölder’s inequality, whereas

in order to prove assumption (iii) we fix i and denote by χnj the characteristic
function of Γni+j/τi,n. With

Γ
′n
i+j = n−

1
4k

1
2
nσ i

n
gnjNi+j and Γ

′′n
i+j = n

1
4k

1
2
n (gnj−1 − gnj )Ui+j

we have

|χnj (t)| = |E[exp(itΓni+j/τi,n)]| = |E[exp(itΓ
′n
i+j/τi,n)]| |E[exp(itΓ

′′n
i+j/τi,n)]|,(4.13)

since Γ
′n
i+j and Γ

′′n
i+j are independent.

If we additionally have (V’), we can assume that σ is bounded away from
zero as well. This is again justified by a standard localising procedure, since
one can find a sequence of stopping times Tk, converging to infinity, such that
σ2
s > Ck > 0 for all s < Tk. Thus we can use the fact that the latter term on

the right hand side of (4.13) is bounded by one, whereas the first quantity is
the absolute value of the characteristic function of a normal distribution with
variance

v2
i,j,n =

knσ
2
i
n

(gnj )2

n
1
2 τ 2
i,n

.
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Therefore we have

|χnj (t)| ≤ |E[exp(itΓ
′n
i+j/τi,n)]| = exp(−

v2
i,j,nt

2

2
).

Since v2
i,j,n is now bounded from below, (iii) follows immediately. On the other

hand, if we impose assumption (A’), we can focus on the characteristic function
of Γ

′′n
i+j. We set hnj = n

1
4k

1
2
n (gnj−1 − gnj ) and obtain

|χnj (t)| ≤ |E[exp(itΓ
′′n
i+j/τi,n)]| = |E[exp(i(hnj /τi,n)tUi+j)]|.

Since hnj /τi,n is bounded both from above and below, uniformly in i, j and n, we
readily obtain the result. �

Proof of Theorem 3
Here we will use the same "small blocks - big blocks"-technique as presented
in Jacod et al. [14], which unfortunately needs a lot of additional notation.
Precisely, we first choose an integer p, which later will go to infinity, and partition
the n observations into several subsets: Set

ai(p) = 2i(p+ 1)kn and bi(p) = 2i(p+ 1)kn + 2pkn

and let Ai(p) denote the set of integers l satisfying ai(p) ≤ l < bi(p) and Bi(p) the
integers between the two sets Ai(p) and Ai+1(p), namely those fulfilling bi(p) ≤
l < ai+1(p). We further define jn(p) to be the largest integer j such that bj(p) ≤ n

holds (that means: Ai(p) and Bi(p) can be accomodated in the set 1, . . . , n

jn(p) + 1 times each), which gives the identity

jn(p) =
⌊ n

2kn(p+ 1)

⌋
− 1. (4.14)

Moreover, we use the notation in(p) = 2(jn(p) + 1)(p+ 1)kn.
We set further

Υn
j,m = |Y n

j,m|l1|Y
n

j+kn,m|
r1 − E[|Y n

j,m|l1|Y
n

j+kn,m|
r1 |Fm

n
], (4.15)

Υ′
n
j,m = |Y n

j,m|l2|Y
n

j+kn,m|
r2 − E[|Y n

j,m|l2|Y
n

j+kn,m|
r2 |Fm

n
] (4.16)

and define

Ỹ n
j =


n
l1+r1

4
− 1

2 Υn
j,ai(p)

, j ∈ Ai(p)

n
l1+r1

4
− 1

2 Υn
j,bi(p)

, j ∈ Bi(p)

n
l1+r1

4
− 1

2 Υn
j,in(p), j ≥ in(p)

Ỹ ′
n

j =


n
l2+r2

4
− 1

2 Υ′nj,ai(p), j ∈ Ai(p)

n
l2+r2

4
− 1

2 Υ′nj,bi(p), j ∈ Bi(p)

n
l2+r2

4
− 1

2 Υ′nj,in(p), j ≥ in(p)
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as well as

ζ(p, 1)nj =

bj(p)−1∑
l=aj(p)

Ỹ n
l and ζ(p, 1)′

n
j =

bj(p)−1∑
l=aj(p)

Ỹ ′
n

l , (4.17)

ζ(p, 2)nj =

aj+1(p)−1∑
l=bj(p)

Ỹ ′
n

l and ζ(p, 2)′
n
j =

aj+1(p)−1∑
l=bj(p)

Ỹ ′
n

l . (4.18)

We set at last

M(p)n = n−
1
2

∑jn(p)
j=0 ζ(p, 1)nj M(p)′n = n−

1
2

∑jn(p)
j=0 ζ(p, 1)′nj

N(p)n = n−
1
2

∑jn(p)
j=0 ζ(p, 2)nj N(p)′n = n−

1
2

∑jn(p)
j=0 ζ(p, 2)′nj

C(p)n = n−
1
2

∑n
j=in(p) Ỹ

n
j C(p)′n = n−

1
2

∑n
j=in(p) Ỹ

′n
j

 (4.19)

and note that

E[ζ(p, 1)nj |Faj(p)

n

] = 0 = E[ζ(p, 2)nj |F bj(p)

n

] (4.20)

by construction. The same property holds for the corresponding prime variables.
The outline of the proof is as follows: We will first show that

n
1
4 (BT (l1, r1)n −BT (l1, r1)) = n

1
4H(p)n + F (p)n

holds, where F (p)n has the property

lim
p→∞

lim sup
n→∞

P (|F (p)n| > ε) = 0 (4.21)

and H(p)n is given by

H(p)n = M(p)n +R(p)n with R(p)n = N(p)n + C(p)n. (4.22)

In a second step we will prove

lim
p→∞

lim sup
n→∞

P (|n
1
4R(p)n| > ε) = 0 (4.23)

for each ε > 0. Similar results hold for the prime variables as well. These steps
ensure that it is sufficient to derive a joint limit theorem for M(p)n and M(p)′n

for any fixed p. The proof of this claim is given in the third step. Precisely, we
will obtain

n
1
4 (M(p)n,M(p)′

n
)
Dst−→ V (p) =

∫ 1

0

v(σu, p) dW
′
u, (4.24)

where the 2× 2-dimensional process v(σu, p) is bounded and converges pointwise
in p to the limiting process v(σu) as defined in Theorem 3. Therefore

V (p)
P−→V (l1, r1, l2, r2) =

∫ 1

0

v(σu) dW
′
u, (4.25)

which will finish the proof.
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Lemma 6 It holds

n
1
4 (BT (l1, r1)n −BT (l1, r1)) = n

1
4H(p)n + F (p)n,

where F (p)n satisfies (4.21).

Proof of Lemma 6 First, we introduce some auxiliary random variables. Let

ξni = n
l1+r1

4 |Zn

i |l1|Z
n

i+kn|
r1

and define

Λn
m =

jn(p)∑
j=0

Ỹ n
aj(p)+m

+ Ỹ n
in(p)+m1{in(p)+m≤n}

as well as

Ξn
m = n−

1
2

( jn(p)∑
j=0

ξnaj(p)+m + ξnin(p)+m1{in(p)+m≤n}

)
for any 0 ≤ m < 2(p+ 1)kn.

We first rewrite the two statistics in the following way:

BT (l1, r1)n −BT (l1, r1) = n−
1
2

2(p+1)kn−1∑
m=0

(
Ξn
m −

1

2(p+ 1)θ
BT (l1, r1)

)
+ op(n

− 1
4 )

and H(p)n = n−
1
2

2(p+1)kn−1∑
m=0

Λn
m.

Thus we are left to prove

lim
p→∞

lim sup
n→∞

P
(∣∣∣n 1

4

(
(2(p+ 1)Ξn

m −
1

θ
BT (l1, r1))− 2(p+ 1)Λn

m

)∣∣∣ > ε
)

= 0,

uniformly in m. Similar to (4.10) we define

ηni,m = n
l+r
4 |Y n

i,m|l|Y
n

i+kn,m|
r.

We see easily that the claim follows, once we have proven the following two
equations uniformly in m and p:

2(p+ 1)n−
1
2

jn(p)∑
j=0

E[ηnaj(p)+m,aj(p)|Faj(p)

n

]− 1

θ
BT (l1, r1) = op(n

− 1
4 ) (4.26)

2(p+ 1)n−
1
2

jn(p)∑
j=0

(ξnaj(p)+m − η
n
aj(p)+m,aj(p)

) = op(n
− 1

4 ) (4.27)
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The convergence in (4.26) can be concluded from an application of Lemma 5,
(2.4) and the approximation error of a Riemann sum.

For the proof of (4.27), we will use related propositions in Barndorff-Nielsen
et al. [4]. Note that by the same arguments as in their work the result follows
from

2(p+ 1)n−
1
4

jn(p)∑
j=0

E[ξnaj(p)+m − η
n
aj(p)+m

|Fmkn
n

]
P−→ 0, (4.28)

uniformly in m and p. A close look at the sections 7 and 8 of Barndorff-Nielsen
et al. [4] shows that the proof of (4.28) works in the same way, provided one uses
assumption (A) in two places. One has to define a quantity similar to the one
in (7.11), whose absolute moments have to exist for all powers s ∈ [0, 1), which
holds in our context due to (ii) in (A). Secondly, one needs the symmetry of U
to conclude similarly as in part (4) of Section 8. �

We start our computations on H(p)n with a simple result on C(p)n.

Lemma 7 We have

lim
p→∞

lim sup
n→∞

P (|C(p)n| > ε) = 0. (4.29)

Proof of Lemma 7 For any fixed p ≥ 1 is the number of summands in C(p)n

bounded above by Cpn
1
2 . Moreover, each summand as well as the factor in front

of the sum is of order n−
1
2 . This gives the result. �

The next auxiliary result gives information about the order of N(p)n, this time
depending on the integer p.

Lemma 8 Assume that p is fixed. Then

E[(n
1
4N(p)n)2] ≤ C

p
(4.30)

is valid.

Proof of Lemma 8 We know from (4.20) that the process

Lnk = n−
1
2

k∑
j=0

ζ(p, 2)nj

is a martingale with respect to the filtration G(p)nj = F bj(p)

n

, which implies

E[(n
1
4N(p)n)2] ≤ 4n−

1
2

jn(p)∑
j=0

E[(ζ(p, 2)nj )2] (4.31)
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via Doob’s inequality. Due to the assumptions on a and σ we have

E[(Ỹ n
j )2] ≤ Cn−1,

independent of j and p. This yields

E[(ζ(p, 2)nj )2] ≤ C.

Hence we obtain the result, since jn(p) ≤ C
√
n
p

holds. �

It remains to show the stable convergence of n
1
4 (M(p)n,M(p)′n).

Lemma 9 For any fixed p ≥ 2 we have

n
1
4 (M(p)n,M(p)′

n
)
Dst−→

∫ 1

0

v(σu, p) dW
′
u, (4.32)

where W ′ is a standard Brownian motion independent of F . We have

vt(σu, p)v(σu, p) =

(
w11 w12

w12 w22

)
(σu, p)

with

wij(σu, p) = θ

∫ 2

0

(2 +
1− s
p

)hij(σu, t, f(s)) ds,

which converges pointwise in p to vt(σu)v(σu).

Proof of Lemma 9 We define ζ(p)nj = (ζ(p, 1)nj , ζ(p, 1)′nj ). Due to Theorem IX
7.28 in Jacod and Shiryaev [16] the following conditions have to be shown

n−
1
2

jn(p)∑
j=0

E[(ζ(p)nj )tζ(p)nj |Faj(p)

n

]
P−→
∫ 1

0

vt(σu, p)v(σu, p) du (4.33)

n−1

jn(p)∑
j=0

E[||ζ(p)nj ||4|Faj(p)

n

]
P−→ 0 (4.34)

n−
1
4

jn(p)∑
j=0

E[ζ(p)nj ∆W (p)nj |Faj(p)

n

]
P−→ 0 (4.35)

n−
1
4

jn(p)∑
j=0

E[ζ(p)nj ∆N(p)nj |Faj(p)

n

]
P−→ 0 (4.36)

with ∆V (p)nj = V n
bj(p)
− V n

aj(p)
for any process V and (4.36) holding for any

bounded martingale N being orthogonal to W .
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(4.35) is obvious, since ζ(p)nj is an even functional in W and the distribution
of U is symmetric. Moreover, with the same arguments as in the proof of Lemma
8 we obtain

E[||ζ(p)nj ||4] ≤ C,

which implies (4.34). (4.36) can be shown by the same methods as in the proof
of Lemma 5.7. in Jacod et al. [14].

We prove (4.33) only for the first entry of the matrix, since analogous proofs
hold in the other cases. Note first that Lemma 5 secures that we may proceed as if
U were normally distributed. We apply the fact that Ỹ n

i and Ỹ n
l are conditionally

independent for |i− l| ≥ 2kn, from which

E[(ζ(p, 1)nj )2|Faj(p)

n

] = 2

bj(p)−1∑
l=aj(p)

bj(p)−1∑
i=l

Cov(Ỹ n
i Ỹ

n
l |Faj(p)

n

) +O(n−1)

= 2

bj(p)−2kn−1∑
l=aj(p)

l+2kn−1∑
i=l

Cov(Ỹ n
i Ỹ

n
l |Faj(p)

n

)

+ 2

bj(p)−1∑
l=bj(p)−2kn

bj(p)−1∑
i=l

Cov(Ỹ n
i Ỹ

n
l |Faj(p)

n

) +O(n−1)

=: ϑn1 (σaj(p)
n

, p) + ϑ′
n
1 (σaj(p)

n

, p) +O(n−1)

follows. By construction, the conditional covariance of both variables depends
only on |i − l|, and can be expressed in terms of h11, which was introduced in
(3.11). This time, we have for i, l ∈ Aj(p)

Cov(Ỹ n
i Ỹ

n
l |Faj(p)

n

) = Cov(Ỹ n
aj(p)

Ỹ n
aj(p)+|i−l||Faj(p)

n

) =
1

n
h11

(
σaj(p)

n

, tn, f
n
( |i− l|

kn

))
with tn = ( kn

n
1
2
ψn2 ,

n
1
2

kn
ψn1 ) and

fn1 (s) = n−
1
2

kn(1−s)∑
j=0

gnj g
n
j+skn , fn2 (s) = n

1
2

kn(1−s)∑
j=0

(gnj − gnj+1)(gnj+skn − g
n
j+1+skn)

fn3 (s) = n−
1
2

kn(2−s)∑
j=0

gnj g
n
j+skn−kn ,

fn4 (s) = n
1
2

kn(2−s)∑
j=0

(gnj − gnj+1)(gnj+skn−kn − g
n
j+skn−kn+1).

We can conclude that

n−
1
2

jn(p)∑
j=0

ϑn1 (σaj(p)
n

, p) = (4p− 2)
kn

n
3
2

jn(p)∑
j=0

2kn−1∑
i=0

h11(σaj(p)
n

, tn, f
n(

i

kn
))
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holds. We will show that the quantity on the right side converges in probability
to

(2− 1

p
)θ

∫ 1

0

∫ 2

0

h11(σu, t, f(s)) ds du =:

∫ 1

0

∫ 2

0

ρ(u, s) ds du .

Remember that t and f were defined following Theorem 3. In order to prove this
proposition we have to take a closer look at the function h11. Note first that the
random vector H in the definition of h11 follows a representation

H = Σ(x, y, z) U,

where U ∼ N4(0, I) and Σ(x, y, z) is a lower triangular matrix, which is contin-
uous in all arguments. Since due to Lebesgue’s theorem Σ 7→ E[η(ΣU)] is for all
functions η, which are continuous and of at most polynomial growth, a continu-
ous mapping as well, we readily obtain that h11 itself is continuous. Therefore,
and since σ was assumed to be bounded, we deduce that

ρn(u, s) := (2− 1

p
)
jn(p)

mn(p)

kn

n
1
2

h11

(
σ bumn(p)c

mn(p)

, tn, f
n(
bknsc
kn

)
)

with mn(p) = n
2knp

is itself bounded. Since

(4p− 2)
kn

n
3
2

jn(p)∑
j=0

2kn−1∑
i=0

h11(σaj(p)
n

, tn, f
n(

i

kn
)) =

∫ 1

0

∫ 2

0

ρn(u, s) ds du ,

its convergence to the quantity defined in (4.37) follows from Lebesgue’s theorem,
as long as ρn converges pointwise to ρ for almost all (u, s) ∈ [0, 1]×[0, 2]. However,
this follows from both (2.4) and (4.14) and from the fact that fn is càdlàg and
converges pointwise to f , σ is càdlàg as well and tn converges to t.

A similar reasoning yields

n−
1
2

jn(p)∑
j=0

ϑ′
n
1 (σaj(p)

n

, p) = n−
3
2

jn(p)∑
j=0

2kn−1∑
i=0

(4kn − 2i)h11(σaj(p)
n

, tn, f
n(

i

kn
))

P−→ θ

p

∫ 1

0

∫ 2

0

(2− s)h11(σu, t, f(s)) ds du .

Hence (4.33) follows with the first entry of vt(σu, p)v(σu, p) being equal to

θ

∫ 2

0

(2 +
1− s
p

)h11(σu, t, f(s)) ds.

The convergence stated in (4.25) can now be concluded easily. The processes
w12 and w22 as the other entries of the matrix vtv are obtained by the same
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arguments. �

Proof of Lemma 1 Without loss of generality we prove Lemma 1 for i = j = 1.
Recall the notation from the proof of Theorem 2, such that we can write

Zt = Z ′t + Z ′′t ,

where the first process basically consists of the Brownian part of the semimartin-
gale plus the noise process and the second process contains the drift part and
the jump part of the semimartingale. We define the random quantities

χ̃ni,j = n
r1+l1

2
−1|Y n

i |l1|Y
n

i+kn,i|
r1
(
|Y n

i+j,i|l1|Y
n

i+kn+j,i|r1 − |Y
n

i+2kn,i|
l1|Y n

i+3kn,i|
r1
)

and note from standard arguments that the stochastic convergence

2

n
1
2

n−4kn+1∑
m=0

2kn−1∑
l=0

E[χ̃nm,l|F i
n
]

P−→
∫ 1

0

wij(σu) du

holds. With

χ̌ni,j = n
r1+l1

2
−1|Z ′ni |l1|Z ′

n

i+kn|
r1
(
|Z ′ni+j|l1|Z ′

n

i+kn+j|r1 − |Z ′
n

i+2kn|
l1|Z ′ni+3kn|

r1
)

it remains to prove that both

2

n
1
2

n−4kn+1∑
m=0

2kn−1∑
l=0

E[χ̌nm,l − χ̃nm,l|F i
n
]

P−→ 0 (4.37)

and

2

n
1
2

n−4kn+1∑
m=0

2kn−1∑
l=0

E[χ̂nm,l − χ̌nm,l|F i
n
]

P−→ 0. (4.38)

For the first result we can refer to the proof of Theorem 1 in Podolskij and
Vetter [18] once again, but this time we take a closer look on the proof than in
Lemma 3. Observe that it suffices to show

2

n
3
2

n−4kn+1∑
i=0

2kn∑
j=0

n
r1+l1

2

(
E[|Z ′ni |l1 |Z ′

n

i+kn|
r1|Z ′ni+j|l1|Z ′

n

i+kn+j|r1|F i
n
]

− E[|Y n

i |l1|Y
n

i+kn,i|
r1|Y n

i+j,i|l1|Y
n

i+kn+j,i|r1|F i
n
]
)

P−→ 0.

in order to obtain (4.37). However, since

|Z ′ni |l1|Z ′
n

i+kn|
r1|Z ′ni+j|l1|Z ′

n

i+kn+j|r1 − |Y
n

i |l1|Y
n

i+kn,i|
r1|Y n

i+j,i|l1 |Y
n

i+kn+j,i|r1

= (|Z ′ni |l1 − |Y
n

i |l1)|Z ′
n

i+kn|
r1 |Z ′ni+j|l1|Z ′

n

i+kn+j|r1 (4.39)

+ |Y n

i |l1(|Z ′
n

i+kn|
r1 |Z ′ni+j|l1|Z ′

n

i+kn+j|r1 − |Y
n

i+kn,i|
r1|Y n

i+j,i|l1|Y
n

i+kn+j,i|r1)
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we can conclude from Lemma 3 in Podolskij and Vetter [18] and through a
recursive argument that (4.37) is proven, as long as

2

n
3
2

n−4kn+1∑
i=0

2kn∑
j=0

E[n
1
2 (Z ′

n

i − Y
n

j,i)
2]

P−→ 0.

However, this follows in the same manner as in Podolskij and Vetter [18].
We will establish (4.38) solely in model (1.3), which is enough to obtain the

result in model (1.1) as well. Note that the claim reduces to the following two
steps:

2

n
3
2

n−4kn+1∑
i=0

2kn∑
j=0

n
r1+l1

2 E[(|Z ′ni |l1|Z ′
n

i+kn|
r1 |Z ′ni+j|l1|Z ′

n

i+kn+j|r1

− |Zn

i |l1 |Z
n

i+kn|
r1|Zn

i+j|l1|Z
n

i+kn+j|r1)1Aci,j |F i
n
]

P−→ 0

and

2

n
3
2

n−4kn+1∑
i=0

2kn∑
j=0

n
r1+l1

2 E[|Z ′ni |l1|Z ′
n

i+kn|
r1|Z ′ni+j|l1|Z ′

n

i+kn+j|r11Ai,j |F i
n
]

P−→ 0,

where Ai,j is the set on which at least one of the random variables |Z ′nm| with
m = i, i+ kn, i+ j, i+ kn + j is larger than n−$. Since

1{|Znm|≥n−$} ≤ 1{|Z′nm|≥n
−$
2
} + 1{|Z′′nm|≥n

−$
2
},

the second result is an easy application of Markov’s and Hölder’s inequality, due
to

E[|Z ′ni ||F i
n
] ≤ Cn−

1
4 and E[|Z ′′ni ||F i

n
] ≤ Cn−

1
4

and the moment assumption on U .
The proof of the first claim is more involved. Note first that from a similar

argument as in (4.39) one can deduce the result from

2

n
3
2

n−4kn+1∑
i=0

2kn∑
j=0

n
r1+l1

2 E[|Z ′′ni |l1|Z ′′
n

i+kn|
r1|Z ′′ni+j|l1|Z ′′

n

i+kn+j|r11Aci,j |F i
n
]

P−→ 0,

which can easily be reduced to the proof of

n
l1
4 E[|Z ′′ni |q1{|Zni |<n−$}|F i

n
]
1
δ

P−→ 0

for some q = l1 · δ with δ > 1 small enough and uniformly in i. Since

1{|Zni |<n−$} ≤ 1{|Z′′ni |<2n−$} + 1{|Z′′ni |≥2n−$}1{|Z′ni |≥n−$},
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the claim can further be reduced to

n
l1
4 E[|Z ′′ni |q1{|Z′ni |≥n−$}|F i

n
]
1
δ

P−→ 0,

uniformly in i. By means of Hölder’s inequality and for some p large enough we
obtain

E[|Z ′′ni |q1{|Z′ni |≥n−$}|F i
n
]
1
δ ≤ E[|Z ′′ni |qp|F i

n
]

1
pδ P (|Z ′ni | ≥ n−$|F i

n
)
p−1
pδ .

Since the first term is bounded (uniformly in i), but not necessarily of order n−
l1
4

as for qp ≤ 2, we see that we are left to prove that

P (|Z ′ni | ≥ n−$|F i
n
) = o(n−

pq
4(p−1) ),

uniformly in i. From

|Z ′ni | ≤ |Q
n

i |+ |U
n

i | ≤ C|∆n
iW |+ |U

n

i |

the claim can further be reduced to

P (|Un

i | ≥ n−$) = o(n−
qp

4(p−1) ) and P (|∆n
iW | ≥ n−$) = o(n−

qp
4(p−1) ).

Both results follow easily form Markov’s inequality. For the first one we have

P (|Un

i | ≥ n−$) = P (|n
1
4U

n

i | ≥ n
1
4
−$).

Thus for some t > qp

4(p−1)( 1
4
−$)

and some η > 0 we obtain

P (|Un

i | ≥ n−$) ≤ E[|n 1
4U

n

i |t]
nt(

1
4
−$)

≤ Cn−( qp
4(p−1)

+η),

since the t-th moment of U is finite by assumption. The result for the Brownian
part follows in the same way. �

Proof of Theorem 6
We start with some results that can easily be concluded from condition (L-q),
q < 1. Recall that it is sufficient to replace the family of functions γk by a
bounded function γ. Note then that (L-q) implies∫

R
|γ(x)|r dx <∞

for all q ≤ r < 1, since with A0 = {|γ(x)| ≤ 1} and A1 = {|γ(x)| > 1} we have∫
A0

|γ(x)|q dx <∞ and λ(A1) <∞,
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where λ denotes the Lebesgue measure. Therefore∫
A0

|γ(x)|r dx ≤
∫
A0

|γ(x)|q dx <∞

and ∫
A1

|γ(x)|r dx ≤ Crλ(A1) <∞,

since γ is assumed to be bounded.

Let further v(X)t denote the variation process of some process X up to time
t. By assumption, κ is a truncation function with bounded support, from which
we can conclude that

κ(x) ≤ C1{|x|≤b}(x)

for some constants b and C. We see easily that κ? νt is of finite variation for any
t, since due to condition (H)

v(κ ? ν)t ≤
∫ t

0

∣∣∣ ∫
R
κ ◦ δ(s, x) dx

∣∣∣ ds
≤

∫ t

0

∫
R
|δ(s, x)|1{|δ(s,x)|≤1} dx ds +

∫ t

0

∫
R
|δ(s, x)|1{1<|δ(s,x)|≤b} dx ds.

For the first integral we have∫ t

0

∫
R
|δ(s, x)|1{|δ(s,x)|≤1} dx ds ≤

∫ t

0

∫
R
(|δ(s, x)| ∧ 1) dx ds

≤
∫ t

0

∫
R

Φ1(γ(x)) dx ds

≤ t

∫
R

Φq(γ(x)) dx <∞.

The latter one satisfies∫ t

0

∫
R
|δ(s, x)|1{1<|δ(s,x)|≤b} dx ds ≤

∫ t

0

∫
R
|γ(x)|1{|γ(x)|>1} dx ds

= t

∫
A1

|γ(x)| dx <∞

for the same reason as above. Therefore, X can be decomposed as

Xt = X0 +Bt +Qt +
∑
s≤t

∆Xs,

with Bt = Bt − κ ? νt being of finite variation. Qt denotes the continuous mar-
tingale part of X as in (4.3).
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Let us now come to the proof of Theorem 6. It is easy to see that Bt inherits
all properties of a typical drift process. Therefore, we know that the assertion
from Theorem 3 holds for the process

Z
′′′

t = X0 +Bt +Qt + Ut.

It remains to show

n
1
4E[|BT (Z, l, r)n −BT (Z

′′′
, l, r)n|] P−→ 0,

which similarly to the proof of Theorem 2 can be reduced to

sup
i
n
p+1
4 E

[∣∣∣|Zn

i |p − |Z
′′′n

i |p
∣∣∣|F i

n

]
≤ αn (4.40)

for all q
2−q < p < 1 and some αn → 0. From

∣∣∣|x+ y|p − |x|p
∣∣∣ ≤ |y|p for p ≤ 1 we

conclude that it is sufficient to prove

sup
i
n
p+1
4 E

[
|Jni |p|F i

n

]
≤ αn (4.41)

with Jt =
∑

s≤t ∆Xs. But

E
[
|Jni |p|F i

n

]
≤ CE

[
|∆n

i J |p|F i
n

]
≤ CE

[ ∑
i
n
<s≤ i+kn

n

|∆Xs|p|F i
n

]

≤ C

∫ i+kn
n

i
n

∫
R
|δ(s, x)|p ds dx ≤ C

∫ i+kn
n

i
n

∫
R
|γ(x)|p ds dx

≤ Cn−
1
2 ,

whenever p ≥ q. (4.41) is then equivalent to q ≤ p < 1. On the other hand, for
q > p we conclude from Hölder’s inequality that

E
[
|Jni |p|F i

n

]
≤ E

[
|Jni |q|F i

n

] p
q ≤ Cn−

p
2q .

Therefore (4.41) holds in this case, provided q
2−q < p < q. We conclude that

(4.41) holds, as long as q
2−q < p < 1. This proves the result. �
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