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Abstract

We propose a new concept of modulated bipower variation for diffusion models with

microstructure noise. We show that this method provides simple estimates for such impor-

tant quantities as integrated volatility or integrated quarticity. Under mild conditions the

consistency of modulated bipower variation is proven. Under further assumptions we prove

stable convergence of our estimates with the optimal rate n−
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4 . Moreover, we construct
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1 Introduction

Continuous time stochastic models represent a widely accepted class of processes in mathemat-

ical finance. Ito diffusions, which are characterised by the equation

Xt = X0 +

∫ t

0
asds +

∫ t

0
σsdWs , (1.1)

are commonly used for modeling the dynamics of interest rates or stock prices. Here W denotes

a Brownian motion, a is a locally bounded predictable drift function and σ is a càdlàg volatility

function. A key issue in econometrics is the estimation (and forecasting) of quadratic variation

of X

IV =

∫ 1

0
σ2

sds ,

which is known as integrated volatility or integrated variance in the econometric literature.

In the last years the availability of high frequency data on financial markets has motivated

a huge number of publications devoted to measurement of integrated volatility. The most

conspicuous idea of estimation of integrated volatility is the realised volatility (RV), which

has been proposed by Andersen, Bollerslev, Diebold & Labys (2001) and Barndorff-Nielsen &

Shephard (2002). RV is the sum of squared increments over non-overlapping intervals within

a sampling period. The consistency result justifying this estimator is a simple consequence

of the definition of quadratic variation. Theoretical and empirical properties of the realised

volatility have been studied in numerous articles (see Jacod (1994), Jacod & Protter (1998),

Andersen, Bollerslev, Diebold & Labys (2001), Barndorff-Nielsen & Shephard (2002) among

many others).

More recently, the concept of realised bipower variation has built a non-parametric frame-

work for backing out several variational measures of volatility (see, e.g., Barndorff-Nielsen &

Shephard (2004) or Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006)), which

has lead to a new development in econometrics. Realised bipower variation, which is defined

by

BV (X, r, l)n = n
r+l
2

−1
n−1
∑

i=1

|∆n
i X|r|∆n

i+1X|l , (1.2)

with ∆n
i X = Xi/n − X(i−1)/n and r, l ≥ 0, provides a whole class of estimators for different

(integrated) powers of volatility. Another important feature of realised bipower variation is

its robustness to finite activity jumps when estimating integrated volatility. This property has

been used to construct tests for jumps (see Barndorff-Nielsen & Shephard (2005) or Christensen

& Podolskij (2006b)).

However, in finance it is widely accepted that the true price process is contaminated by

microstructure effects, such as price discreteness or bid-ask spreads, among others. This in-

validates the asymptotic properties of RV, and in the presence of microstructure noise RV is

both biased and inconsistent (see Bandi & Russel (2004) or Hansen & Lunde (2006) among
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others). Nowadays there exist two concurrent methods of estimating integrated volatility in

the presence of i.i.d. noise. Zhang, Mykland & Ait-Sahalia (2005) have proposed to use a two

scale estimator, which is based on a subsampling procedure (a multiscale estimator proposed

by Zhang (2006) is more efficient than a two scale estimator). Another method is a realised

kernel estimator which has been proposed by Barndorff-Nielsen, Hansen, Lunde & Shephard

(2006). Both methods provide consistent estimates of integrated volatility in the presence of

i.i.d. noise and achieve the optimal rate n− 1
4 . However, these procedures can not be gener-

alised in order to obtain estimators of other (integrated) powers of volatility, such as integrated

quarticity, which is defined by

IQ =

∫ 1

0
σ4

sds.

This quantity is of particular interest, because, properly scaled, it occurs as conditional variance

in the central limit theorem for RV and has to be estimated. Moreover, both methods are not

robust to jumps in the price process.

In this paper we propose a new concept of modulated bipower variation (MBV) for diffusion

models with (i.i.d.) microstructure noise. The novelty of this concept is twofold. First, this

method provides a class of estimates for arbitrary integrated powers of volatility. Second,

modulated multipower variation, which is a direct generalisation of MBV, turns out to be

robust to finite activity jumps. In particular, we construct estimators of IV and IQ which

are robust to finite activity jumps. To the best of our knowledge these are the first consistent

estimates of IV and IQ when both microstructure noise and jumps are present. An easy

implementation of MBV is another nice feature of our method.

This paper is organised as follows. In Section 2 we state the basic notations and definitions.

In Section 3 we show the consistency of our estimators and prove a central limit theorem

for its normalized versions with an optimal rate n− 1
4 . In particular, we construct some new

estimators of integrated volatility and integrated quarticity, and present the corresponding

asymptotic theory. Moreover, we demonstrate how the assumptions on the noise process can

be relaxed. Section 4 illustrates the finite sample properties of our approach by means of a

Monte Carlo study. Some conclusions and directions for future research are highlighted in

Section 5. Finally, we present the proofs in the Appendix.

2 Basic notations and definitions

We consider the process Y , observed at time points ti = i/n, i = 0, . . . , n. Y is defined on the

filtered probability space (Ω,F , (Ft)t∈[0,1], P ) and exhibits a decomposition

Y = X + U , (2.1)

where X is a diffusion process defined by (1.1), and U is an i.i.d. symmetric noise process with

EU = 0 , EU2 = ω2. (2.2)
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Further, we assume that X and U are independent.

The core of our approach is the following class of statistics

MBV (Y, r, l)n = n
(r+l)

4
− 1

2

M
∑

m=1

|Ȳ (K)
m |r|Ȳ (K)

m+1|l r, l ≥ 0 , (2.3)

Ȳ (K)
m =

1
n
M − K + 1

mn
M

−K
∑

i=
(m−1)n

M

(

Y i+K
n

− Y i
n

)

. (2.4)

Here M = M(n) and K = K(n) are two natural numbers approaching infinity as n → ∞ which

will be chosen below. Clearly, the constants M , K must satisfy

K ≤ n

M
, (2.5)

because otherwise the defintion in (2.4) makes no sense. Note that Ȳ
(K)
m is the mean of all

increments of length K
n within the interval [m−1

M , m
M ].

Remark 1 In the definition (2.3) m + 1 can be replaced by m + q for any fixed natural q.

Such procedure has been suggested for BV (X, r, l) by Andersen, Bollerslev & Diebold (2006)

and Barndorff-Nielsen & Shephard (2006). Huang & Tauchen (2005) show by empirical studies

that extra lagging reduces the impact of microstructure noise on BV (X, r, l). This may also

cause an improvement of empirical behaviour of MBV (Y, r, l)n, but the asymptotic results are

not affected by this change.

The intuition behind the estimator defined by (2.3) can be explained as follows. The constants

K and M control the stochastic order of the term Ȳ
(K)
m . In particular, when n

M −K converges

to infinity we have

Ū (K)
m = Op

(√

1
n
M − K

)

, (2.6)

X̄(K)
m = Op

(

√

K

n

)

. (2.7)

If

K = c1n
1
2 , M =

n

c2K
(2.8)

for some constants c1 > 0 and c2 > 1 (which will be chosen later), the stochastic orders of the

quantities in (2.6) and (2.7) are balanced, and we obtain

Ȳ (K)
m = Op(n

− 1
4 ) , (2.9)

which explains the normalizing factor in (2.3).
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More generally, we define the modulated multipower variation by setting

MMV (Y, r1, . . . , rk)n = n
r+
4
− 1

2

M−k+1
∑

m=1

k
∏

j=1

|Ȳ (K)
m+k−1|rj ,

where k is a fixed natural number, rj ≥ 0 for all j and r+ = r1 + · · · + rk. This type

of construction has been intensively used in a pure Ito diffusion framework (see, for instance,

Barndorff-Nielsen & Shephard (2007) or Christensen & Podolskij (2006b) among others). Later

on we will show that the modulated multipower variation, for an appropriate choice of k and

r1, . . . , rk, turns out to be robust to finite activity jumps when estimating arbitrary powers of

volatility.

In the sequel we mainly focus on the asymptotic theory of the modulated bipower vari-

ation, but we also state the corresponding results for MMV (Y, r1, . . . , rk)n for the sake of

completeness.

3 Asymptotic theory

In this section we study the asymptotic behaviour of the class of estimators MBV (Y, r, l)n,

r, l ≥ 0. Before we state the main results of this section we introduce the following notation:

µr = E[|z|r ], z ∼ N(0, 1). (3.1)

3.1 Consistency

Theorem 1 Assume that E|U |2(r+l)+ǫ < ∞ for some ǫ > 0. If M and K satisfy (2.8) then

the convergence in probability

MBV (Y, r, l)n
P−→ MBV (Y, r, l) =

µrµl

c1c2

∫ 1

0
(ν1σ

2
u + ν2ω

2)
r+l
2 du (3.2)

holds. The constants ν1 and ν2 are given by

ν1 =
c1(3c2 − 4 + (2 − c2)

3 ∨ 0)

3(c2 − 1)2
,

ν2 =
2((c2 − 1) ∧ 1)

c1(c2 − 1)2
. (3.3)

It is remarkable that the limit MBV (Y, r, l) in (3.2) depends only on the second moment ω2 of

U , and no higher moments are involved. This can be illustrated as follows. Observe that due

to the choice of the constants in (2.8) we have

n
1
4 Ū (K)

m
D−→ N (0, ν2ω

2) , (3.4)

which is justified by a standard central limit theorem. Under the regularity condition of The-

orem 1 the moments of Ū
(K)
m can be (asymptotically) replaced by the corresponding moments

of the normal distribution in (3.4), which only depend on ω2.
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In fact, the estimation of higher moments of U turns out to be difficult in practice, because

they are extremely small. Note, for instance, that the asymptotic results for the twoscale

(multiscale) estimator of integrated volatility depend on the fourth moment of U . Since only

the second moment ω2 is involved in our approach, we do not face these problems.

Finally, we present the convergence in probability of the modulated multipower variation

MMV (Y, r1, . . . , rk)n.

Theorem 2 Assume that E|U |2r++ǫ < ∞ for some ǫ > 0. If M and K satisfy (2.8) then the

convergence in probability

MMV (Y, r1, . . . , rk)n
P−→ MMV (Y, r1, . . . , rk) =

µr1 · · ·µrk

c1c2

∫ 1

0
(ν1σ

2
u + ν2ω

2)
r+
2 du (3.5)

holds.

3.1.1 Consistent estimates of integrated volatility and integrated quarticity

Theorem 1 shows that MBV (Y, r, l)n is inconsistent when estimating arbitrary (integrated)

powers of volatility. Though, when r + l is an even number (this condition is satisfied for

the most interesting cases) a slight modification of MBV (Y, r, l)n turns out to be consistent.

Let us illustrate this procedure by providing consistent estimates for integrated volatility and

integrated quarticity.

As already mentioned in Zhang, Mykland & Ait-Sahalia (2005) the statistic

ω̂2 =
1

2n

n
∑

i=1

|Y i
n
− Y i−1

n
|2 (3.6)

is a consistent estimator of the quantity ω2 with the convergence rate n− 1
2 . Consequently, we

obtain the convergence in probability

MRV (Y )n :=
c1c2MBV (Y, 2, 0)n − ν2ω̂

2

ν1

P−→
∫ 1

0
σ2

u du (3.7)

as a direct application of Theorem 1 and (3.6).

Now we are in a position to construct a consistent estimator of integrated quarticity. It

follows from (3.7) and Theorem 1 that

MRQ(Y )n :=
c1c2

3 MBV (4, 0)n − 2ν1ν2ω̂
2MRV (Y )n − ν2

2(ω̂2)2

ν2
1

P−→
∫ 1

0
σ4

u du. (3.8)

Note, however, that Theorem 1 gives a whole class of new estimators of integrated volatility

and integrated quarticity.

Remark 2 The constant ν1 corresponds to the second moment of the term n
1
4 W̄

(K)
m , where W

is a Brownian motion. More precisely, we have

n
1
4 W̄ (K)

m ∼ N(0, ν
(n)
1 ) ,

5
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with

ν
(n)
1 = ν1 +

(3 − c2) ∧ 1
c2−1

(c2 − 1)
√

n
+ O(

1

n
). (3.9)

Clearly, it holds that ν
(n)
1 → ν1. However, we can reduce the bias of the estimates MRV (Y )n

and MRQ(Y )n by replacing ν1 by ν
(n)
1 .

3.1.2 Robustness to finite activity jumps

As already mentioned in the introduction one of our main goals is finding consistent estimates of

volatility functionals when both microstructure noise and jumps are present. For this purpose

we consider the model

Z = Y + J , (3.10)

where Y is a noisy diffusion process defined by (2.1) and J denotes a finite activity jump

process, i.e. J exhibits finitely many jumps on compact intervals. Typical examples of a finite

activity jump process are compound Poisson processes.

The next result gives us conditions on r1, . . . , rk under which the modulated multipower

variation MMV (Z, r1, . . . , rk)n is robust to finite activity jumps.

Proposition 3 If the assumptions of Theorem 2 are satisfied, max(r1, . . . , rk) < 2 and Z is of

the form (3.10) then we have

MMV (Z, r1, . . . , rk)n
P−→ MMV (Y, r1, . . . , rk) , (3.11)

where MMV (Y, r1, . . . , rk) is given by (3.5).

Proposition 3 is shown by the same methods as the corresponding result in the noiseless model

(i.e. U = 0). We refer to Barndorff-Nielsen, Shephard & Winkel (2006) for more details.

Now we can construct consistent estimates for integrated volatility and integrated quarticity

which are robust to noise and finite activity jumps. As a direct consequence of Proposition 3

the convergence in probability

MBV (Z)n :=

c1c2
µ2

1
MBV (Z, 1, 1)n − ν2ω̂

2

ν1

P−→
∫ 1

0
σ2

u du (3.12)

holds. Similar to the previous subsection, a robust (tripower) estimate of the integrated quar-

ticity is given by

MTQ(Z)n :=

c1c2
µ3

2/3

MMV (Z, 4
3 , 4

3 , 4
3)n − 2ν1ν2ω̂

2MBV (Z)n − ν2
2(ω̂2)2

ν2
1

P−→
∫ 1

0
σ4

u du. (3.13)

Remark 3 Recall that the realised volatility RV converges in probability to integrated volatility

plus the sum of squared jumps in the jump-diffusion model. It is interesting to see that the

6
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presence of jumps destroys the consistency of the estimator MRV (Z)n, which can be interpreted

as an analogue of RV . To show this let us consider a simple model

Z = J

(i.e. X = U = 0), where J is a (deterministic) jump process that possesses one jump of size 1

at point t0 = 1
2 . Moreover, we set c2 = 2 and c1 = 1 for simplicity. For a subsequence Mk = 2k

(that is nk = 22(k+1)) the point t0 is located on the boundary of some interval [m−1
M , m

M ], and

we have

MBV (Z, 2, 0)nk

P−→ 0.

When we use a subsequence Mk = 3k (that is nk = 4 · 32k) the point t0 lies in the middle of

some interval [m−1
M , m

M ], and we obtain the convergence

MBV (Z, 2, 0)nk

P−→ 1.

Consequently, the statistic MRV (Z)n does not converge in probability when there are jumps.

In contrast to our approach the multiscale estimator of Zhang (2006) and the realised kernel

estimator of Barndorff-Nielsen, Hansen, Lunde & Shephard (2006) converge in probability to

the quadratic variation of the jump-diffusion process X + J (in the presence of noise). In

principle, it is possible to test for jumps in the noisy model by comparing the multiscale

estimator or the realised kernel estimator with the robust statistic MBV (Z, 1, 1)n (see, for

instance, Barndorff-Nielsen & Shephard (2006) or Christensen & Podolskij (2006) for more

details on such tests in the noiseless models), although we will not further discuss this idea in

the paper.

Another important object of study is the impact of infinite activity jumps on the modulated

bipower (multipower) variation. Such studies can be found in Barndorff-Nielsen, Shephard &

Winkel (2006), Woerner (2006) and in a recent paper of Ait-Sahalia & Jacod (2006) for the

noiseless framework. We are convinced that similar results hold also for the noisy model,

although a more detailed analysis is required.

3.1.3 Relaxing the assumptions on the noise process U

So far we assumed that U is an i.i.d. sequence and is independent of the diffusion X. Hansen

& Lunde (2006) have reported that both assumptions are somewhat unrealistic for ultra-high

frequency data. In the following we demonstrate how these conditions can be relaxed.

First, note that the i.i.d assumption is not essential to guarantee the stochastic order of

Ū
(K)
m in (2.6). When we assume, for instance, that U is a q-dependent sequence, the result

of Theorem 1 holds, although higher order autocorrelations of U appear in the limit. In this

case we require a stationarity condition on U for the estimation of the autocorrelations and a

bias-correction of the limit in (3.2).

7
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Further, by using other constants M and K the influence of the noise process U can be

made negligible, and independence between X and U is not required. (2.6) and (2.7) imply

that in particular, when we set

K = c1n
1
2
+γ , M =

n

c2K
(3.14)

for some 0 < γ < 1
2 , the diffusion process X dominates the noise process U . More precisely,

the convergence in probability

n
(1−2γ)(r+l)

4
− 1−2γ

2

M
∑

m=1

|Ȳ (K)
m |r|Ȳ (K)

m+1|l
P−→ µrµlν

r+l
2

1

c1c2

∫ 1

0
|σu|r+l du (3.15)

holds. The convergence in (3.15) has another useful side effect. It provides consistent estimates

for arbitrary integrated powers of volatility. However, since the diffusion process X dominates

the noise process U , the above choice of K and M leads to a slower rate of convergence.

3.2 Central limit theorems

In this subsection we present the central limit theorems for a normalized version of MBV (Y, r, l)n.

For this purpose we need a structural assumption on the process σ.

(V): The volatility function σ satisfies the equation

σt = σ0 +

∫ t

0
a′sds +

∫ t

0
σ′

s−dWs +

∫ t

0
v′s−dVs. (3.16)

Here a′,σ′ and v′ are adapted càdlàg processes, with a′ also being predictable and locally

bounded, and V is a new Brownian motion independent of W .

Condition (V) is a standard assumption that is required for the proof of the central limit

theorem for the pure diffusion part X (see e.g., Barndorff-Nielsen, Graversen, Jacod, Podol-

skij & Shephard (2006) or Christensen & Podolskij (2006a,b)). When X is a unique strong

solution of a stochastic differential equation then under some smoothness assumption on the

volatility σt = σ(t,Xt) condition (V) (with v′s = 0 for all s) is a simple consequence of Ito’s

formula. Therefore, assumption (V) is fulfilled for many widely used financial models (see Black

& Scholes (1973), Vasicek (1977), Cox, Ingersoll & Ross (1980) or Chan, Karolyi, Longstaff &

Sanders (1992) among others).

For technical reasons we require a further structural assumption on the noise process U .

We assume that the filtered probability space (Ω,F , (Ft)t∈[0,1], P ) supports another Brownian

motion B = (Bt)t∈[0,1] that is independent of the diffusion process X, such that the represen-

tation

Ui =
√

nω(B i
n
− B i−1

n
) (3.17)

holds.

8
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Remark 4 Condition (3.17) ensures that both processes X and U are measurable with respect

to the same type of filtration. This assumption enables us to use the central limit theorems for

high frequency observations (see Jacod & Shiryaev (2003)). The same assumption has already

been used in Gloter & Jacod (2001a) and Gloter & Jacod (2001b).

The normal distribution of the noise induced by (3.17) is not crucial for our asymptotic

theory, and other functions of rescaled increments of B can be considered. Of course, this leads

to a slight modification of the central limit theorems presented below.

In the central limit theorems which will be demonstrated below we use the concept of stable

convergence of random variables. Let us shortly recall the definition. A sequence of random

variables Gn converges stably in law with limit G (throughout this paper we write Gn
Dst−→ G),

defined on an appropriate extension (Ω′,F ′, P ′) of a probability space (Ω,F , P ), if and only

if for any F-measurable and bounded random variable H and any bounded and continuous

function g the convergence

lim
n→∞

E[Hg(Gn)] = E[Hg(G)]

holds. This is obviously a slightly stronger mode of convergence than convergence in law (see

Renyi (1963) or Aldous & Eagleson (1978) for more details on stable convergence).

Now we present a central limit theorem for the statistic MBV (Y, r, l)n.

Theorem 4 Assume that U is of the form (3.17) and condition (V) is satisfied. If M and K

satisfy (2.8), and

1. r, l ∈ (1,∞) ∪ {0} or

2. r or l ∈ (0, 1], and σs 6= 0 for all s,

then we have

n
1
4

(

MBV (Y, r, l)n − MBV (Y, r, l)
)

Dst−→ L(r, l) ,

where L(r, l) is given by

L(r, l) =

√

µ2rµ2l + 2µrµlµr+l − 3µ2
rµ

2
l

c1c2

∫ 1

0
(ν1σ

2
u + ν2ω

2)
r+l
2 dW ′

u. (3.18)

Here W ′ denotes another Brownian motion defined on an extension of the filtered probability

space (Ω,F , (Ft)t∈[0,1], P ) and is independent of the σ-field F .

Note that L(r, l) defined by (3.18) depends only on the second moment ω2 of U . This is

only partially a consequence of the representation (3.17)! In fact, when r and l are even the

conditional variance of L(r, l) is not affected by the distribution of U . This can be explained

by the weak convergence in (3.4) using the same arguments as presented in Section 3.1.

9
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Since ω̂2−ω2 = Op(n
− 1

2 ) we obtain the central limit theorems for the estimates MRV (Y )n

and MBV (Y )n defined by (3.7) and (3.12), respectively, as a direct consequence of Theorem

4.

Corollary 1 Assume that U is of the form (3.17) and condition (V) is satisfied. If M and K

satisfy (2.8) then we have

n
1
4

(

MRV (Y )n −
∫ 1

0
σ2

u du
)

Dst−→
√

2c1c2

ν1

∫ 1

0
(ν1σ

2
u + ν2ω

2) dW ′
u , (3.19)

where W ′ is another Brownian motion defined on an extension of the filtered probability space

(Ω,F , (Ft)t∈[0,1], P ) and is independent of the σ-field F .

Corollary 2 Assume that U is of the form (3.17) and condition (V) is satisfied. If M and K

satisfy (2.8), and σs 6= 0 for all s, then we have

n
1
4

(

MBV (Y )n −
∫ 1

0
σ2

u du
)

Dst−→
√

c1c2(µ
2
2 + 2µ2

1µ2 − 3µ4
1)

µ4
1ν

2
1

∫ 1

0
(ν1σ

2
u + ν2ω

2) dW ′
u , (3.20)

where W ′ is another Brownian motion defined on an extension of the filtered probability space

(Ω,F , (Ft)t∈[0,1], P ) and is independent of the σ-field F .

Now let us demonstrate how Corollary 1 and 2 can be applied in order to obtain confidence

intervals for the integrated volatility. Note that the central limit theorem in (3.19) is not

feasible yet. Nevertheless, we can easily obtain a feasible version of Corollary 1. Since the

Brownian motion W ′ is independent of the volatility process σ, the limit defined by (3.19) has

a mixed normal distribution with conditional variance

β2 =
2c1c2

ν2
1

∫ 1

0
(ν1σ

2
u + ν2ω

2)2 du.

By an application of Theorem 1 and (3.6) the statistic

β2
n = 2c1c2MRQ(Y )n +

4c1c2ν2

ν1
ω̂2MRV (Y )n +

2c1c2ν
2
2

ν2
1

(ω̂2)2

is a consistent estimator of β2. Of course, we can replace MRQ(Y )n and MRV (Y )n by

MTQ(Y )n and MBV (Y )n, respectively, if we want to have an estimator of β2 which is robust

to finite activity jumps.

Now we exploit the properties of stable convergence (see Podolskij (2006), Lemma 1.9) to

obtain a standard central limit theorem

n
1
4

(

MRV (Y )n −
∫ 1
0 σ2

u du
)

βn

D−→ N (0, 1). (3.21)

From the latter confidence intervals for the integrated volatility can be derived. A feasible

version of Corollary 2 can be obtained similarly.

10
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With the above formulae for β2 and β2
n in hand we can choose the constants c1 and c2

that minimize the conditional variance. In order to compare our asymptotic variance with the

corresponding results of other methods we assume that the volatility process σ is constant. In

that case the conditional variance β2 is minimized by

c1 =

√

18

(c2 − 1)(4 − c2)
· ω

σ
(3.22)

c2 =
8

5
, (3.23)

and is equal to
256

3
√

18
· σ3ω ≈ 20.11σ3ω.

Note that the limits in Corollary 1 and 2 are the same up to a constant. Consequently, the

asymptotic conditional variance of MBV (Y )n is minimized for the same choice of c1 and c2 as

above, and is approximately equal to

26.14σ3ω ,

when the volatility function is constant.

As already mentioned in Ait-Sahalia, Mykland & Zhang (2005) (see also Gloter & Jacod

(2001a) and Gloter & Jacod (2001b)) the maximum likelihood estimator (when U is normal

distributed) converges at the rate n− 1
4 and has an asymptotic variance

8σ3ω ,

which is a natural lower bound. The cubic kernel, Tukey-Hanning kernel and modified Tukey-

Hanning kernel estimator which have been proposed by Barndorff-Nielsen, Hansen, Lunde &

Shephard (2006) possess the asymptotic variances 9.04σ3ω, 9.18σ3ω and 8.29σ3ω, respectively.

This shows that our estimator is somewhat inefficient in comparison to the listed kernel based

estimators. A natural direction of future research is to modify our procedure in order to achieve

a higher efficiency.

However, the concept of modulated bipower (multipower) variation has been established

to provide estimates of arbitrary powers of volatility for the noisy diffusion model, which are

additionally robust to finite activity jumps. These are properties which are not captured by

multiscale or realised kernel approach.

For the sake of completeness we state a central limit theorem for the modulated multipower

variation MMV (Y, r1, . . . , rk)n.

Theorem 5 Assume that U is of the form (3.17) and condition (V) is satisfied. If M and K

satisfy (2.8), and

1. r1, . . . , rk ∈ (1,∞) ∪ {0} or

11
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2. one of ri ∈ (0, 1], and σs 6= 0 for all s,

then we have

n
1
4

(

MMV (Y, r1, . . . , rk)n − MMV (Y, r1, . . . , rk)
)

Dst−→ L(r1, . . . , rk) ,

where L(r1, . . . , rk) is given by

L(r, l) =

√

A(r1, . . . , rk)

c1c2

∫ 1

0
(ν1σ

2
u + ν2ω

2)
r+l
2 dW ′

u , (3.24)

with

A(r1, . . . , rk) =

k
∏

l=1

µ2rl
− (2k − 1)

k
∏

l=1

µ2
rl

+ 2

k−1
∑

j=1

j
∏

l=1

µrl

k
∏

l=k−j+1

µrl

k−j
∏

l=1

µrl+rl+j

Here W ′ denotes another Brownian motion defined on an extension of the filtered probability

space (Ω,F , (Ft)t∈[0,1], P ) and is independent of the σ-field F .

Note that the constant A(r1, . . . , rk) also appears in the central limit theorem for multipower

variation in a pure diffusion framework (see Barndorff-Nielsen, Graversen, Jacod, Podolskij &

Shephard (2006)).

4 Simulation study

In this section, we inspect the finite sample properties of various proposed estimators for both

integrated volatility and quarticity through Monte Carlo experiments. Moreover, we compare

our estimators’ behaviour with the properties of the corresponding kernel-based estimators

from Barndorff-Nielsen, Hansen, Lunde & Shephard (2006). To this end, we choose the same

stochastic volatility model as in their work, namely

dXt = µdt + σtdWt, σt = exp(β0 + β1τt), dτt = ατtdt + dBt, corr(dWt, dBt) = ρ (4.1)

with µ = 0.03, β0 = 0.3125, β1 = 0.12, α = −0.025 and ρ = −0.3. U is further assumed to be

normal distributed with variance ω2.

4.1 Simulation design

We create 20, 000 repetitions of the system in equation (4.1), for which we use an Euler approx-

imation and different values of n. Whenever we have to estimate ω2, we choose ω̂2 as defined

in (3.6).

12
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Since we state propositions for a whole class of estimators, we do not focus on one special

estimator. To be precise, we investigate the finite sample properties in three different situations.

First we study the performance of MRV (Y )n as an estimator for the integrated volatility

and compare it with the corresponding kernel-based statistic of Barndorff-Nielsen, Hansen,

Lunde & Shephard (2006), using the modified Tukey-Hanning kernel. We denote this estimator

by KB(Y )n. In Table 1 we present the Monte Carlo results for both mean and variance of the

two statistics for n = 256, 1024, 4096, 9216, 16384, 25600 and ω2 = 0.01, 0.001. Moreover, Table

2 gives the finite sample distribution of the standardised statistic in (3.21), which converges

stably in law to a normal distribution. Table 3 shows the results of the asymptotic analysis of

the statistic

n
1
4

(

log
(

MRV (Y )n

)

− log
(

∫ 1
0 σ2

u du
))

βn/MRV (Y )n

D−→ N (0, 1), (4.2)

which is obtained via an application of the delta method.

Secondly, we analyse the performance of the estimation of the integrated volatility in the

presence of jumps. In this case we use the bipower estimator MBV (Z)n, which is robust to

jumps. Again, we compare its finite sample properties with the behaviour of the kernel-based

estimator KB(Z)n, and present the Monte Carlo results for both statistics in Table 4.

At last, we analyse how well MRQ(Y )n works as an estimator for the integrated quarticity

in contrast to the proposed bipower variation estimator in Barndorff-Nielsen, Hansen, Lunde

& Shephard (2006), which we call BP (Y )n. Note that BP (Y )n has a convergence rate of n− 1
6 ,

which is obviously slower that the convergence rate of our estimator MRQ(Y )n. The Monte

Carlo results for model (4.1) are given in Table 5, whereas Table 6 shows the results in the

quite simple setting

dXt = µdt + dWt (4.3)

with µ = 0.03 as above, which we consider additionally.

As mentioned in (3.22), the asymptotic (conditional) variance of the estimators MRV (Y )n

and MBV (Y )n can be minimized for an appropriate choice of c1 and c2, which in principal can

be estimated from the data. Nevertheless, since K, M and n
M all have to be integers, it is pretty

uncertain that an optimal choice of c1 and c2 is feasible, when n is fixed. In practice, one should

therefore estimate both IV and ω2 from the data and choose reasonable values of c1 and c2,

which yield feasible K and M . In these simulations the described procedure leads to c1 = 0.25

for ω2 = 0.01 and c1 = 0.125 for ω2 = 0.001, whereas c2 = 2. Since the calculation of optimal

values of c1 and c2 for the estimation of IQ involves the solution of polynomial equations with

higher degrees than two, we have dispensed with this analysis and set c1 = 1 and c2 = 1.6,

both for ω2 = 0.01 and ω2 = 0.001. To produce the process J we allocate one jump in the

interval [0,1]. The arrival time of this jump is considered to be uniformly distributed, whereas

the jump size is N(0, h2) distributed with h = 0.1, 0.25.

13
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4.2 Results

Since our aim is mainly to give an idea of how well the different estimators work, we content

ourselves with computing the estimated mean and variance of the bias-corrected statistics.

Except for MRV (Y )n we therefore do not evaluate the accuracy of the stated central limit

theorems.

Table 1 shows that MRV (Y )n works quite well as an estimator of the integrated volatility

in the noisy diffusion setting, since both bias and variance are rather small, at least for sample

sizes larger than n = 1024. For large values of n and ω2 = 0.01 it provides even better finite

sample properties than KB(Y )n, whereas the kernel-based estimator improves a lot, when the

variance of the noise terms becomes smaller. Nevertheless, MRV (Y )n is a serious alternative

to the kernel-based estimator, especially for large values of ω2.

Table 2 indicates that the behaviour of the standardised statistic depends slightly on ω2.

For a large variance of the noise term the distribution seems to be shifted to the left, since

there is a negative bias and all quantiles are overestimated. For ω2 = 0.001 the estimator’s

properties improve, since both bias and variance diminish. However, it has a small positive

bias, whereas all quantiles are still overestimated. In both cases it takes rather large samples to

provide a good approximation of a standard normal distribution. We suggest that these effects

are caused by a large variance of the estimator of the integrated quarticity. A more detailed

analysis of this issue is stated below.

The transition to the log-transformed statistic given by (4.2) yields an obvious improvement

in the approximation of the limiting normal distribution. Table 3 shows that this statistic

provides very good finite sample properties in the case of ω2 = 0.01, even for small sample

sizes. For ω2 = 0.001 there is less improvement, but still the estimation of the quantiles

becomes more accurate. Therefore, it is preferable to use the log-transformation in practice,

when one constructs confidence sets or tests.

From Table 4 we conclude that in the noisy jump-diffusion framework the proposed bipower

estimator MBV (Z)n has a much smaller bias and variance than the kernel-based statistic

KB(Y )n, which simply estimates the integrated volatility plus the squared jump size. Note

that the negative bias for small values of n is caused by large negative bias of MBV (Y )n

(which is the bipower estimator in model (2.1)) for these choices of n. We suggest that this

effect somewhat compensates the impact of the jump even for moderate sample sizes.

Table 5 demonstrates the finite sample properties of MRQ(Y )n and BP (Y )n as estimates

of the integrated quarticity in the noisy diffusion model. While the bias of our estimator

MRQ(Y )n is much smaller than the bias of BP (Y )n for all n and ω2, the variance of both

estimators is rather large. This feature is explained by a large value of
∫ 1
0 σ8

udu in model (4.1),

which appears in the variance term for the integrated quarticity.

To reduce the impact of
∫ 1
0 σ8

udu we present the finite sample properties of MRQ(Y )n and

14
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BP (Y )n in Table 6 in the less complex model (4.3). We observe that the variance of BP (Y )n is

smaller than that of MRQ(Y )n, although BP (Y )n has a slower rate of convergence. However,

we think that the efficiency of MRQ(Y )n can be improved by choosing the constants c1 and

c2 optimally.

5 Conclusions and directions for future research

In this paper we proposed to use the modulated bipower (multipower) variation to estimate

some functionals of volatility in the simultaneous presence of noise and jumps. We constructed

some estimates of integrated volatility and integrated quarticity and proved their consistency.

Furthermore, we showed the stable convergence of the modulated bipower variation with an

optimal convergence rate n− 1
4 . Finally, the Monte Carlo study indicates that our estimators

are quite efficient at sampling frequencies normally used in applied work.

This paper highlights the potential of the modulated bipower approach, and we are con-

vinced that many unsolved problems in a noisy (jump-)diffusion framework can be tackled by

our methods. Let us mention some most important directions for future research. First, we

intend to modify our approach by putting different weights on the increments of the process Y

in order to obtain more efficient estimators of integrated volatility and integrated quarticity.

Second, we plan to derive a multivariate version of the current approach. This can be used

to estimate the quadratic covariation, which is a key concept in econometrics (see Brandt &

Diebold (2006), Griffin & Oomen (2006) or Sheppard (2006)), in the presence of noise. An

interesting and very important modification of this problem is the estimation of the quadratic

covariation for non-synchronously observed data in the presence of noise (see Hayashi & Yoshida

(2005) for more details in a pure diffusion case). Further, a joint asymptotic distribution theory

for multiscale estimator (or realised kernel estimator) and the robust estimator MBV (Y, 1, 1)n

would allow to test for finite activity jumps in a noisy jump-diffusion model.

6 Appendix

In the following we assume without loss of generality that a, σ, a′, σ′ and v′ are bounded (for

details see e.g. Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006)). Moreover,

the constants that appear in the proofs are all denoted by C.

First, we show that replacing ν
(n)
1 defined in (3.9) by ν1 does not influence the consistency

and the central limit theorem.

Lemma 1 We have
∫ 1

0
(ν1σ

2
u + ν2ω

2)
r+l
2 du −

∫ 1

0
(ν

(n)
1 σ2

u + ν2ω
2)

r+l
2 du = op(n

− 1
4 )

for all r, l ≥ 0.
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Proof of Lemma 1 For r+l
2 ≥ 1 we obtain by the mean value theorem and boundedness of σ

∫ 1

0
(ν1σ

2
u + ν2ω

2)
r+l
2 du −

∫ 1

0
(ν

(n)
1 σ2

u + ν2ω
2)

r+l
2 du ≤ C(ν1 − ν

(n)
1 ) = op(n

− 1
4 ).

When 0 < r+l
2 < 1 we have

∫ 1

0
(ν1σ

2
u + ν2ω

2)
r+l
2 du −

∫ 1

0
(ν

(n)
1 σ2

u + ν2ω
2)

r+l
2 du ≤ (ν2ω

2)
r+l
2

−1(ν1 − ν
(n)
1 ) = op(n

− 1
4 ) ,

and the proof is complete. �

Before we start with the proofs of main results, we introduce some more notations and prove

some simple Lemmata. We consider the quantities

βn
m = n

1
4 (σm−1

M
W̄ (K)

m + Ū (K)
m ) β

′n
m = n

1
4 (σm−1

M
W̄

(K)
m+1 + Ū

(K)
m+1), (6.1)

which approximate Ȳ
(K)
m and Ȳ

(K)
m+1, respectively, by using the associated increments of the

underlying Brownian motion W . We further define

ξn
m = n

1
4 Ȳ (K)

m − βn
m ξ

′n
m = n

1
4 Ȳ

(K)
m+1 − β

′n
m (6.2)

as the differences between the true quantities and their approximations. We further set f(x) :=

|x|r and g(x) := |x|l. In the next Lemma we study the stochastic order of the terms βn
m and

ξn
m.

Lemma 2 We have

E[|ξn
m|q] + E[|ξ′n

m |q] + E[|n 1
4 X̄(K)

m |q] < C (6.3)

for any q > 0, and

E[|βn
m|q] + E[|β′n

m |q] + E[|n 1
4 Ȳ (K)

m |q] < C (6.4)

for any 0 < q < 2(r + l) + ǫ with ǫ as stated in Theorem 1. Both results hold uniformly in m.

Proof of Lemma 2 We begin with the proof of (6.3). In the case q ≥ 1 this property follows

from

E[|ξn
m|q] = E

[
∣

∣

∣

n
1
4

n
M − K + 1

nm
M

−K
∑

i=
n(m−1)

M

(X i+K
n

− X i
n
) − σm−1

M
(W i+K

n
− W i

n
)
∣

∣

∣

q]

(6.5)

≤ 1
n
M − K + 1

nm
M

−K
∑

i= n(m−1)
M

E
[∣

∣

∣
n

1
4 ((X i+K

n
− X i

n
) − σm−1

M
(W i+K

n
− W i

n
))
∣

∣

∣

q]

=
1

n
M − K + 1

nm
M

−K
∑

i=
n(m−1)

M

E
[
∣

∣

∣
n

1
4

(

∫ i+K
n

i
n

asds +

∫ i+K
n

i
n

(σs − σm−1
M

)dWs

)
∣

∣

∣

q]

,

16



M. Podolskij and M. Vetter: Estimation of Volatility Functionals

the boundedness of the functions a and σ, and a use of Burkholder’s inequality. For q < 1

Jensen’s inequality yields

E[|ξn
m|q] ≤ E[|ξn

m|]q ,

and we obtain (6.3) just as above. The corresponding assertion for n
1
4 X̄

(K)
m can be shown

analogously.

Now let us prove (6.4). For q ≥ 1 we have

E[|n 1
4 Ȳ (K)

m |q] ≤ C(E[|n 1
4 Ū (K)

m |q] + E[|n 1
4 X̄(K)

m |q])

Investigating the asymptotic behaviour of Ū
(K)
m it can be shown that n

1
4 Ū

(K)
m can be rewritten

as a weighted sum of independent random variables, for which the convergence in distribution

n
1
4 Ū (K)

m
D−→ N (0, ν2ω

2)

holds. Using the continuity theorem and the moment assumption for each 0 < q < 2(r + l) + ǫ

we obtain by uniform integrability of |n 1
4 Ū

(K)
m |q that E[|n 1

4 Ū
(K)
m |q] is bounded. This proves

(6.4) for n
1
4 Ȳ

(K)
m . The corresponding result for the quantities βn

m and β
′n
m can be shown ana-

logously. �

The next Lemma will be used later to obtain (6.9) from (6.10). For a more general setting see

Lemma 5.4 in Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006).

Lemma 3 If

Zn
m := 1 + |µn

m| + |µ′n
m| + |µ′′n

m |

satisfies E[|Zn
m|q] < C for all 0 < q < 2(r + l) + ǫ and if further

1

M

M
∑

m=1

E[|µ′n
m − µ

′′n
m |2] → 0 (6.6)

holds, then we have

1

M

M
∑

m=1

E[f2(µn
m)(g(µ

′n
m) − g(µ

′′n
m ))2] → 0.

Proof of Lemma 3 We define

θn
m := f2(µn

m)(g(µ
′n
m) − g(µ

′′n
m ))2

and

mA(δ) := sup{|g(x) − g(y)| : |x − y| < δ, |x| ≤ A}.
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For all A > 1 and 0 < δ < 1 we have

θn
m ≤ C(A2rmA(δ)2 + A2(r+l)1{|µ′n

m−µ′′n
m |>δ} + (Zn

m)2(r+l)(1{|µn
m|>A} + 1{|µ′n

m |>A} + 1{|µ′′n
m |>A}))

≤ C(A2rmA(δ)2 + A2(r+l) |µ
′n
m − µ

′′n
m |2

δ2
+

(Zn
m)2(r+l)+ǫ′

Aǫ′
)

for some ǫ′ < ǫ. Since E[(Zn
m)2(r+l)+ǫ′ ] is bounded, we obtain

1

M

M
∑

m=1

E[θn
m] ≤ C(A2rmA(δ)2 +

M
∑

m=1

A2(r+l)

Mδ2
|µ′n

m − µ
′′n
m |2 +

1

Aǫ
).

For each A we have mA(δ) → 0. Therefore the assertion follows from (6.6). �

Proof of Theorem 1

We introduce the quantities

MBV n :=

M
∑

m=1

ηn
m and MBV

′n :=

M
∑

m=1

η
′n
m ,

where ηn
m and η

′n
m are defined by

ηn
m :=

n
r+l
4

c1c2
E[|Ȳ (K)

m |r|Ȳ (K)
m+1|l|Fm−1

M
]

and

η
′n
m :=

µrµl

c1c2
(ν1σ

2
m−1

M

+ ν2ω
2)

r+l
2 ,

respectively. Riemann integrability yields

1

M
MBV

′n P−→ MBV (Y, r, l),

so we are forced to prove

MBV (Y, r, l)n − 1

M
MBV n P−→ 0 (6.7)

and

1

M
(MBV n − MBV

′n)
P−→ 0 (6.8)

in two steps.

Considering the first step we recall the identity
√

n = c1c2M and obtain therefore

MBV (Y, r, l)n − 1

M
MBV n =

M
∑

m=1

(

γm − E[γm|Fm−1
M

]
)

,
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where γm is given by

γm = n
(r+l)

4
− 1

2 |Ȳ (K)
m |r|Ȳ (K)

m+1|l.

Using Lenglart’s inequality (for details see Lemma 5.2 in Barndorff-Nielsen, Graversen, Jacod,

Podolskij & Shephard (2006)) we find that the stochastic convergence stated in (6.7) follows

from

M
∑

m=1

E[|γm|2|Fm−1
M

] =
1

n

M
∑

m=1

E[|n 1
4 Ȳ (K)

m |2r|n 1
4 Ȳ

(K)
m+1|2l|Fm−1

M
]

P−→ 0.

Using Hölder’s inequality we find

E[|n 1
4 Ȳ (K)

m |2r|n 1
4 Ȳ

(K)
m+1|2l|Fm−1

M
]

≤ (E[|n 1
4 Ȳ (K)

m |2(r+l)|Fm−1
M

])
1
p 1(E[|n 1

4 Ȳ
(K)
m+1|2(r+l)|Fm−1

M
])

1
p 2

with p1 = l
r + 1 and p2 = r

l + 1. We therefore obtain the desired result by noting that

E[|n 1
4 Ȳ (K)

m |2(r+l)] = O(1)

holds (uniformly in m), which is an application of Lemma 2. This completes the proof of (6.7).

To prove the assertion in (6.8) we recall that f(x) = |x|r and g(x) = |x|l and observe the

identity

E[n
r+l
4 f(σm−1

M
W̄ (K)

m + Ū (K)
m )g(σm−1

M
W̄

(K)
m+1 + Ū

(K)
m+1)|Fm−1

M
] =

µrµl

c1c2
(ν

(n)
1 σ2

m−1
M

+ ν2ω
2)

r+l
2 .

By Lemma 1 we obtain

1

M
(MBV n − MBV

′n) =
1

M

M
∑

m=1

E[ζn
m|Fm−1

M
] + op(1)

with

ζn
m =

n
r+l
4

c1c2
(f(Ȳ (K)

m )g(Ȳ
(K)
m+1) − f(σm−1

M
W̄ (K)

m + Ū (K)
m )g(σm−1

M
W̄

(K)
m+1 + Ū

(K)
m+1)).

To obtain the desired result it suffices to show

1

M

M
∑

m=1

E[|ζn
m|] → 0.

We use the Cauchy-Schwarz inequality to obtain

1

M

M
∑

m=1

E[|ζn
m|] ≤

( 1

M

M
∑

m=1

E[|ζn
m|2]

)
1
2
,
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from which we deduce that the assertion holds when

1

M

M
∑

m=1

E[|ζn
m|2] → 0. (6.9)

In a first step we obtain for some constant C > 0

|ζn
m|2 =

1

c2
1c

2
2

(f(ξn
m + βn

m)g(ξn
m+1 + βn

m+1) − f(βn
m)g(β

′n
m ))2

≤ C(g2(ξn
m+1 + βn

m+1)(f(ξn
m + βn

m) − f(βn
m))2

+ f2(βn
m)(g(ξn

m+1 + βn
m+1) − g(βn

m+1))
2 + f2(βn

m)(g(βn
m+1) − g(β

′n
m ))2) ,

where the quantities βn
m and ξn

m are defined by (6.1) and (6.2), respectively. Since we have

shown in (6.3) and (6.4) that the conditions on the boundedness of Zn
m in our application of

Lemma 3 are fulfilled, it suffices to prove

1

M

M
∑

m=1

E[|ξn
m|2 + |ξn

m+1|2 + |βn
m+1 − β

′n
m |2] → 0 (6.10)

to obtain the assertion.

For the first term in (6.10) we have

E[|ξn
m|2] ≤ 1

n
M − K + 1

n
M

−K
∑

i=
n(m−1)

m

E
[
∣

∣

∣
n

1
4 ((X i+K

n
− X i

n
) − σm−1

M
(W i+K

n
− W i

n
))
∣

∣

∣

2]

as in (6.5). Using (2.8) and

(X i+K
n

− X i
n
) − σm−1

M
(W i+K

n
− W i

n
) =

∫ i+K
n

i
n

asds +

∫ i+K
n

i
n

(σs − σm−1
M

)ds

we obtain

E
[
∣

∣

∣
n

1
4 ((X i+K

n
− X i

n
) − σm−1

M
(W i+K

n
− W i

n
))
∣

∣

∣

2]

≤ C
(

n− 1
2 + n

1
2 E
[

∫ i+K
n

i
n

(σs − σm−1
M

)2ds
])

≤ C
(

n− 1
2 + n

1
2 E
[

∫ m
M

m−1
M

(σs − σm−1
M

)2ds
])

.

Consequently,

1

M

M
∑

m=1

E[|ξn
m|2] ≤ C

M
∑

m=1

E
[

∫ m
M

m−1
M

(σs − σm−1
M

)2ds
]

+ o(1)

= C

M
∑

m=1

E
[

∫ m
M

m−1
M

(σs − σ ⌊Ms⌋
M

)2ds
]

+ o(1)

= C

∫ 1

0
E
[

(σs − σ ⌊Ms⌋
M

)2
]

ds + o(1)

20



M. Podolskij and M. Vetter: Estimation of Volatility Functionals

follows. Since σ is bounded and càdlàg, Lebesgue’s theorem yields

1

M

M
∑

m=1

E[|ξn
m|2] → 0

and as well for the second term in (6.10). We further have

βn
m+1 − β

′n
m = n

1
4 (σ m

M
− σm−1

M
)W̄

(K)
m+1.

Since W̄
(K)
m+1 is independent of σt for any t ≤ m

M we obtain

1

M

M
∑

m=1

E[|βn
m+1 − β

′n
m |2] ≤ C

M

M
∑

m=1

E[|σ m
M

− σm−1
M

|2]

≤ C

M

M
∑

m=1

E[|σ m
M

− σs|2 + |σs − σm−1
M

|2].

The assertion therefore follows with the same arguments as above. That completes the proof

of (6.8). �

Proof of Theorem 2

Theorem 2 can be proven by the same methods as Theorem 1. �

Proof of Theorem 4

Here we mainly use the same techniques as presented in Barndorff-Nielsen, Graversen, Jacod,

Podolskij & Shephard (2006) or Christensen & Podolskij (2006b). We will state the proof of

the key steps and refer to the articles quoted above for the details.

We define the quantity

Ln(r, l) = n− 1
4

M
∑

m=1

(

f(βn
m)g(β

′n
m ) − E[f(βn

m)g(β
′n
m )|Fm−1

M
]
)

, (6.11)

where the terms βn
m and β

′n
m are given by (6.1), and f(x) = |x|r, g(x) = |x|l. In the next

Lemma we state the central limit theorem for Ln(r, l).

Lemma 4 We have

Ln(r, l)
Dst−→ L(r, l) ,

where L(r, l) is defined in Theorem 4.

Proof of Lemma 4 First, note that

Ln(r, l) =

M+1
∑

m=2

θn
m + op(1) ,
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where θn
m is given by

θn
m = n− 1

4

(

f(βn
m−1)

(

g(β
′n
m−1) − µl(ν

(n)
1 σ2

m−2
M

+ ν2ω
2)

l
2

)

+ µl(ν
(n)
1 σ2

m−1
M

+ ν2ω
2)

l
2

(

f(βn
m) − µr(ν

(n)
1 σ2

m−1
M

+ ν2ω
2)

r
2

))

.

We have that

E[θn
m|Fm−1

M
] = 0 ,

and
M+1
∑

m=2

E[|θn
m|2|Fm−1

M
]

P−→ µ2rµ2l + 2µrµlµr+l − 3µ2
rµ

2
l

c1c2

∫ 1

0
(ν1σ

2
u + ν2ω

2)r+l du.

Next, let Z = W or B. Since θn
m is an even functional in W and B, and (W,B)

D
= −(W,B),

we obtain the identity

E[θn
m(Z m

M
− Zm−1

M
)|Fm−1

M
] = 0.

Finally, let N = (Nt)t∈[0,1] be a bounded martingale on
(

Ω,F , (Ft)t∈[0,1], P
)

, which is orthogonal

to W and B (i.e., with quadratic covariation [W,N ]t = [B,N ]t = 0 almost surely). By the

arguments of Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006) we have

E[θn
m(N m

M
− Nm−1

M
)|Fm−1

M
] = 0.

Now the stable convergence in Lemma 4 follows by Theorem IX 7.28 in Jacod & Shiryaev

(2003). �

Now we are left to prove the convergence

n
1
4

(

MBV (Y, r, l)n − MBV (Y, r, l)
)

− Ln(r, l)
P−→ 0. (6.12)

Due to the result of Lemma 1 the convergence in (6.12) is equivalent to

M
∑

m=1

E[ϑn
m|Fm−1

M
]

P−→ 0 , (6.13)

M
∑

m=1

ϑ
′n
m

P−→ 0 , (6.14)

with ϑn
m, ϑ

′n
m defined by

ϑn
m = n− 1

4

[

f(n
1
4 Ȳ (K)

m )g(n
1
4 Ȳ

(K)
m+1) − f(βn

m)g(β
′n
m )
]

,

ϑ
′n
m = n

1
4

∫ m
M

m−1
M

(

(ν1σ
2
u + ν2ω

2)
r+l
2 − (ν1σ

2
m−1

M

+ ν2ω
2)

r+l
2

)

du.
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The convergence in (6.14) has been shown in Barndorff-Nielsen, Graversen, Jacod, Podolskij &

Shephard (2006), and so we concentrate on proving (6.13). Observe that

ϑn
m = n− 1

4 f(n
1
4 Ȳ (K)

m )
(

g(n
1
4 Ȳ

(K)
m+1) − g(β

′n
m )
)

+ n− 1
4 g(β

′n
m )
(

f(n
1
4 Ȳ (K)

m ) − f(βn
m)
)

Now we obtain

M
∑

m=1

E[ϑn
m|Fm−1

M
] =

M
∑

m=1

E[ϑn
m(1) + ϑn

m(2)|Fm−1
M

] + op(1) , (6.15)

with ϑn
m(1), ϑn

m(2) defined by

ϑn
m(1) = n− 1

4∇g(β
′n
m )f(n

1
4 Ȳ (K)

m )ξ
′n
m ,

ϑn
m(2) = n− 1

4∇f(βn
m)g(β

′n
m )ξn

m ,

where ξn
m, ξ

′n
m are given by (6.2), and ∇h denotes the first derivative of h. In fact, it is quite

complicated to show (6.15) (especially when r or l ∈ (0, 1]), but it can be proven exactly as in

Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006). Note also that when r or

l ∈ (0, 1] the terms ∇g(β
′n
m ) and ∇f(βn

m) are still well defined (almost surely), because σs 6= 0

for all s. Assumption (V) implies the decomposition

ξn
m = ξn

m(1) + ξn
m(2) ,

where ξn
m(1), ξn

m(2) are defined by
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n
1
4

n
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,

and a similar representation holds for ξ
′n
m . Let us now prove that

M
∑

m=1

E[ϑn
m(2)|Fm−1

M
]

P−→ 0. (6.16)

A straightforward application of Burkholder’s inequality shows that

n− 1
4

M
∑

m=1

E[∇f(βn
m)g(β

′n
m )ξn

m(1)|Fm−1
M

]
P−→ 0.
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Next, note that since f is an even function ∇f is odd. Consequently, ∇f(βn
m)g(β

′n
m )ξn

m(2) is

an odd functional of (W,V,B). Since (W,V,B)
D
= −(W,V,B) we obatin

n− 1
4

M
∑

m=1

E[∇f(βn
m)g(β

′n
m )ξn

m(2)|Fm−1
M

] = 0 ,

which implies (6.16). Similarly we can show that

M
∑

m=1

E[ϑn
m(1)|Fm−1

M
]

P−→ 0 ,

which completes the proof of Theorem 4. �

Proof of Theorem 5

Theorem 5 can be proven by the same methods as Theorem 4. �
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ω2 = 0.01 ω2 = 0.001

n Mean Variance Mean Variance

MRV (Y )n

256 0.1363 0.63 0.5245 1.782

1024 0.0433 0.219 0.1717 0.269

4096 0.0113 0.102 0.0478 0.055

9216 0.0045 0.064 0.0243 0.031

16384 0.0059 0.05 0.0129 0.021

25600 0.004 0.039 0.0094 0.017

KB(Y )n

256 -0.022 0.228 -0.0289 0.143

1024 0.0074 0.091 -0.0075 0.042

4096 0.0195 0.046 0.0004 0.015

9216 0.0203 0.038 0.001 0.009

16384 0.0201 0.04 0.001 0.007

25600 0.0178 0.046 0.0013 0.005

Table 1 gives the Monte Carlo results for mean and variance of both MRV (Y )n−
∫ 1
0 σ2

udu and

KB(Y )n−
∫ 1
0 σ2

udu for various values of n and ω2. The data are generated from the model (4.1).

27



M. Podolskij and M. Vetter: Estimation of Volatility Functionals

n Mean Variance 0.5% 2.5% 5% 95% 97.5% 99.5%

ω2 = 0.01

256 -0.1537 1.522 0.0438 0.0817 0.1123 0.9813 0.996 0.9999

1024 -0.107 1.208 0.0271 0.062 0.0924 0.9728 0.992 0.9995

4096 -0.1 1.124 0.02 0.0503 0.0814 0.9697 0.9887 0.9989

9216 -0.076 1.082 0.0161 0.0456 0.073 0.9653 0.9872 0.9987

16384 -0.0762 1.058 0.0139 0.0443 0.0712 0.9628 0.9861 0.9991

25600 -0.0608 1.043 0.0118 0.0398 0.068 0.9627 0.9846 0.9984

ω2 = 0.001

256 0.0024 1.352 0.0343 0.0697 0.0994 0.9948 0.9999 1

1024 0.0875 1.114 0.0189 0.0438 0.0677 0.9744 0.9941 0.9998

4096 0.0671 1.047 0.0122 0.0361 0.059 0.9611 0.9862 0.9981

9216 0.0342 1.032 0.011 0.0323 0.0561 0.9556 0.982 0.9977

16384 0.0186 1.039 0.0103 0.0339 0.0603 0.953 0.9796 0.9972

25600 0.0066 1.049 0.0091 0.0319 0.0578 0.9527 0.9801 0.9969

Table 2 prints mean and variance of the standardised statistic in (3.21) as well as its sim-

ulated quantiles. Precisely, the last columns give the frequency of the event that the value of

the statistic lies below some typical quantiles of a standard normal distribution. The data are

generated from the model (4.1).
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n Mean Variance 0.5% 2.5% 5% 95% 97.5% 99.5%

ω2 = 0.01

256 0.0481 1.19 0.0073 0.0336 0.0631 0.9282 0.9614 0.9919

1024 0.0052 1.087 0.0077 0.0299 0.0582 0.9453 0.9714 0.9935

4096 -0.0103 1.046 0.0067 0.0298 0.0571 0.9484 0.9735 0.9945

9216 -0.0176 1.022 0.0066 0.0264 0.0537 0.9497 0.9745 0.994

16384 -0.019 1.025 0.0056 0.029 0.0565 0.9502 0.9757 0.9954

25600 -0.0207 1.009 0.0043 0.0257 0.0516 0.9509 0.975 0.9949

ω2 = 0.001

256 0.2156 1.345 0.01 0.0382 0.0653 0.8957 0.9549 0.9965

1024 0.1948 1.117 0.0067 0.0267 0.0489 0.9272 0.9718 0.9969

4096 0.1266 1.072 0.0065 0.0272 0.0482 0.9364 0.9707 0.994

9216 0.0938 1.041 0.0056 0.0252 0.0482 0.9376 0.9702 0.9943

16384 0.057 1.034 0.0056 0.0253 0.0505 0.9438 0.9738 0.9946

25600 0.046 1.021 0.0057 0.0233 0.0476 0.9438 0.973 0.9948

Table 3 prints mean and variance of the standardised statistic in (4.2) as well as its simulated

quantiles. Precisely, the last columns give the frequency of the event that the value of the statis-

tic lies below some typical quantiles of a standard normal distribution. The data are generated

from the model (4.1).
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ω2 = 0.01, h = 0.25 ω2 = 0.001, h = 0.25 ω2 = 0.001, h = 0.1

n Mean Variance Mean Variance Mean Variance

256 0.0582 0.614 -0.0839 0.332 -0.1224 0.29

1024 0.0835 0.295 0.0274 0.133 -0.102 0.112

4096 0.0707 0.15 0.0466 0.063 0.0184 0.056

9216 0.0642 0.102 0.0461 0.043 0.0107 0.038

16384 0.0599 0.076 0.044 0.032 0.025 0.028

25600 0.0566 0.059 0.0415 0.025 0.0181 0.023

KB(Y )n

256 0.2227 0.39 0.2168 0.295 0.0631 0.17

1024 0.2507 0.224 0.2381 0.168 0.0924 0.063

4096 0.2667 0.173 0.249 0.142 0.102 0.038

9216 0.2675 0.17 0.2527 0.138 0.1013 0.03

16384 0.2731 0.172 0.2474 0.128 0.1009 0.028

25600 0.2674 0.177 0.2546 0.134 0.1028 0.027

Table 4 shows mean and variance of MBV (Z)n −
∫ 1
0 σ2

udu and KB(Z)n −
∫ 1
0 σ2

udu, thus in

the case of jumps. We choose the sample frequency as before and analyse the finite sample

properties for different values of ω2 and h, where h denotes the variance of the jump size.
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ω2 = 0.01 ω2 = 0.001

n Mean Variance Mean Variance

MRQ(Y )n

256 0.0948 37.568 0.0976 37.282

1024 0.069 21.982 -0.058 14.315

4096 0.0271 8.587 0.0814 10.671

9216 0.0359 6.015 0.0471 5.942

16384 0.049 4.525 0.0532 4.326

25600 0.0279 3.34 0.0293 3.095

BP (Y )n

256 -1.169 8.628 -1.2835 7.595

1024 -0.6031 5.273 -0.6581 5.19

4096 -0.2556 3.286 -0.348 2.98

9216 -0.1304 2.134 -0.2024 2.031

16384 -0.0748 1.6 -0.1428 1.568

25600 0.0456 1.245 -0.1187 1.204

Table 5 shows the finite sample properties of MRQ(Y )n −
∫ 1
0 σ4

udu and BP (Y )n −
∫ 1
0 σ4

udu in

model (4.1). Both sample frequency and noise are the same as in Table 1.
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ω2 = 0.01 ω2 = 0.001

n Mean Variance Mean Variance

MRQ(Y )n

256 0.0745 1.348 0.0686 1.274

1024 0.0128 0.587 0.0121 0.557

4096 0.0135 0.306 0.0013 0.278

9216 0.0113 0.203 0.015 0.184

16384 0.0159 0.152 0.0155 0.14

25600 0.0088 0.117 0.0077 0.108

BP (Y )n

256 -0.2517 0.304 -0.2803 0.274

1024 -0.1811 0.186 -0.1434 0.169

4096 -0.0312 0.108 -0.0745 0.095

9216 -0.0089 0.077 -0.04 0.065

16384 0.0078 0.059 -0.0287 0.048

25600 0.0148 0.047 -0.0206 0.039

Table 6 shows the finite sample properties of MRQ(Y )n −
∫ 1
0 σ4

udu and BP (Y )n −
∫ 1
0 σ4

udu in

model (4.3). Both sample frequency and noise are the same as in Table 1.
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