Decentralization of the Size and Scope of Local Governments and Corruption

Rajeev K. Goel
Department of Economics
Illinois State University
Normal, IL 61790-4200
U.S.A
E-mail: rkgoel@ilstu.edu

Michael A. Nelson
Department of Economics
University of Akron
Akron, OH 44325
U.S.A.
E-mail: nelson2@uakron.edu

JEL Classification codes: H73; H11

Keywords: Corruption; Fiscal decentralization; Local government fragmentation; Special-purpose government; General-purpose government

2009 Draft

The authors’ names appear in alphabetical order and no seniority of authorship is implied. A version of this paper was presented at the Bank of Finland Institute for Economies in Transition. We would like to especially thank Iikka Korhonen and William Pyle for helpful comments.
Decentralization of the Size and Scope of Local Governments and Corruption

ABSTRACT

This research adds to the literature on the nexus between government and corruption by examining further the influence of government decentralization on corruption. Previous research has focused primarily on fiscal decentralization. We bring additional evidence to bear for the United States by addressing whether the structure of local governments – measured both in terms of the scope of services offered and the size of the population served – has a bearing on corruption within the state. Results show that government decentralization does not necessarily reduce corruption – the type of decentralization matters. Specifically, we find that more general-purpose governments consistently contribute to corruption. In contrast, the effect of special-purpose governments on corruption is mixed. The findings uniquely flush out the tension between fiscal decentralization and fragmental local government structures in terms of impacts on corruption. Beyond this, we find that the influences of various government enforcement agencies on corruption, including police, judiciary and corrections, vary. Other corruption determinants generally support the literature. Policy implications are discussed.
INTRODUCTION

The nexus between government and corruption has intrigued researchers, policymakers and the public for quite sometime. Government, via its monopoly on enforcement and, often as a monopolist in many industries and services, is in a unique position to affect both the demand and supply sides of corruption. On the supply side, enforcement agencies can act as a check against corrupt practices by deterring, apprehending and punishing both bribe takers and bribe solicitors (La Porta et al. (2004)). However, this aspect becomes somewhat muddled when some enforcers are themselves corrupt (see Banerjee (1997)). On the demand side, government officials are empowered to create bottlenecks in the performance of their duties (Brennan and Buchanan (1980)). These institutional obstacles (red tape) create conditions for the public to offer bribes (dubbed the “tollbooth theory” by Shleifer and Vishny (1993, 1999); also Guriev (2004)). Furthermore, government agencies in a corrupt economy might end up bribing each other to push their agenda (Basu et al. (1992), Becker and Stigler (1974), Mookherjee and Png (1995)). Thus, the role of the government is quite complex, especially given the nuances surrounding its structure and scope (see Rose-Ackerman (1999)).

This complexity has posed problems for researchers trying to gauge the overall impact of government on corruption. Recent research has examined the influence of size and scope of government (Goel and Nelson (1998)), of the degree of fiscal decentralization of government functions (Arikan (2004), Brueckner (2000), Fisman and Gatti (2002a, 2002b); see Bardhan and Mookherjee (2006) for a review), etc. on the level of corrupt activity.\(^1\) Generally, the overall evidence on government’s impact on corruption is inconclusive (see Aidt (2003), Jain (2001) and Lambsdorff (2006) for

\(^{1}\) See Arzaghi and Henderson (2005) for reasons behind fiscal decentralization across nations.
surveys of the literature; also see Svensson (2005)), owing primarily to the underlying difficulties with adequately measuring certain key institutional details (see La Porta et al. (1999)).

The present research adds to the literature by examining further the influence of government decentralization on corruption. Previous work in this area has focused primarily on fiscal decentralization – the degree to which lower levels of government have spending and tax authority relative to higher levels of government. We bring additional evidence to bear on this question in this paper in the context of the U.S. states. Beyond this, we also address the question of whether the structure of local governments has a bearing on the incidence of corruption within the state.

Local government structure is assessed both in terms of the scope of services offered (e.g., multi-function, general purpose governments like counties and municipalities as compared to single-purpose units of local governments like special districts) and the degree of fragmentation (the number of units of local government serving a state’s population).

There are reasons to expect that both the scope and degree of fragmentation of local governments could, in fact, influence the level of corrupt activity within a state. For example, the potential gains from corrupt activity may be greater for units of governments with responsibilities that are broad in scope. In contrast, citizens residing in jurisdictions that serve a small population may be closely tied or related to elected officials and this may act as a corruption deterrent. These arguments and others

2 Perhaps the closest previous research to the present work is by Fisman and Gatti (2002b) using U.S. data for their analysis of federal transfers to state-local governments. However, our analysis of the structure of local governments and fragmentation is unique.

3 There are several other concepts of decentralization that have been discussed in the literature. See, for example, Treisman (2002b). Our analysis is restricted to the two decentralization measures discussed in this paragraph.
surrounding the link between the size and scope of government and corruption are explored further below.

The issue is important from a global perspective because the demand for decentralized government structures has increased over the past quarter century, particularly among developing countries (Arzaghi and Henderson (2005)). Motivated by efficiency concerns in the delivery of public services, and with the goal of giving citizens more voice in governmental affairs, the World Bank (1999, Ch. 5) reports that the number of subnational governments has proliferated in recent years. In the U.S., the number of single-function governmental units has also increased considerably in recent decades (excluding school districts where substantial consolidation has taken place). Yet, in the past few years, policy makers in metropolitan areas have also increasingly looked at the consolidation of local governments and “regionalism” as a strategy to deliver services in a more cost effective manner. The potential impact of such changes in government structure on corruption has received little attention in this policy debate.

The results from our analysis show that greater decentralization - as we define and measure it - does not necessarily reduce corruption. In particular, we find that a more fragmented local government structure is associated with a heightened level of corrupt activity, when measured by conviction rates of public officials. The results suggest that any efficiency gains that are realized by local government consolidation might also include less corruption by public officials. To the extent that our findings can be generalized to other countries (especially those with a federal constitution) our results

4 See also Bardhan and Mookherjee (2006).
5 See, for example, Carr and Feiock (2004) for a discussion of the merits of regionalism.
should also serve as a cautionary note when it comes to policy initiatives calling for
greater devolution of power and decision making from the central government.

DECENTRALIZATION OF THE PUBLIC SECTOR IN THE UNITED STATES

In this section, we provide an overview of government decentralization in the United States. Panel A in Table 1 describes the structure of local governments and how it varies among the 50 states as of the year 2002. General-purpose governments provide a wide variety of services and are defined by the U.S. Census Bureau to include county, municipal, town or township forms of government. As can be seen from the table, there is a considerable range in the number of general-purpose governments among the states, ranging from a high of 2,824 government units in Illinois to a low of four in Hawaii.\(^6\)

Special-districts are independent units of government that typically perform a single function. Slightly more than a quarter of these governments are independent school districts. Others are formed to provide services such as libraries, various social services (e.g., health and hospitals), flood control, soil and water conservation, water supply, fire protection, and cemeteries. Still others are organized to finance infrastructure such as schools, highways, parking, water transport, and transit districts. These latter districts may dissolve once the infrastructure is in place and asset ownership is transferred to another unit of local government. Approximately 10 percent of all special

\(^6\) The number of general-purpose governments has changed little over the years. For example, the number of county governments decreased slightly from 3,049 in 1967 compared to 3,034 in 2002. The number of municipality, town, and township governments increased by 2% over a similar period (2002 Census of Governments, Vol. 1, *Governmental Organization*, Table 4).
purposes, governments serve more than one function; the most common are districts that provide both sewerage and water supply services.\(^7\)

The number of special-purpose government units among the 50 states varies even more dramatically than the variation in general purpose governments. For instance, as shown in Table 1, the number of special-purpose local governments ranged from a high of 4,079 units in Illinois to only 14 such jurisdictions in Alaska. The corresponding mean for all states was 971.

Panel B in Table 1 summarizes data on the degree of fiscal decentralization in the U.S. using two alternative measures that have been used in the literature (e.g., Oates (1999), Fisman and Gatti (2002b), and Arikan (2004)).\(^8\) These measures are the local government share of total revenues generated in the state-local sector and the corresponding local government share of total state-local spending. Using either fiscal decentralization measure, the ratio between the smallest local-share to the largest is around three to one, based on 2001-04 data. During this time period, Nevada had the most fiscally decentralized state-local sector with the local share of total revenues and total expenditures exceeding 64%. In contrast, Hawaii was the most centralized of the 50 states with a local government share of revenues (spending) standing only at 21.4% (22.0%).\(^9\)

7 The number of independent school districts in the U.S. declined by nearly one-third between 1967 and 1987 - due to district consolidations - but this figure has been relatively stable since that time. In contrast, the number of other special district governments has increased steadily in recent decades (e.g., nearly a 65% increase between 1967 and 2002). Source: 2002 Census of Governments, Vol. 1, Governmental Organization, Table 5.
8 For a critique of these measures of fiscal decentralization, especially as they pertain to cross-country analysis, see Prud'homme (1995) and Fisman and Gatti (2002a).
9 The correlation between the two measures is 0.93.
DO DECENTRALIZED GOVERNMENTS DETER CORRUPTION?

A widely accepted definition of corruption terms it as the abuse of public office for private gain. In this context, our objective in this paper is to examine whether variations in decentralization of the size and scope of local governments differently affect the abilities of public officials to abuse their powers. To provide theoretical background on the nexus between corruption and decentralization, we provide a brief review of the extant literature. In recent years theories surrounding the causes and effects of corruption do not seem to have kept pace with the proliferation of empirical studies on the subject (see Jain (2001), Lambsdorff (2006)). A key reason for this disparity is the relative ease with which the theoretical underpinnings of corruption are able to borrow from the existing literature from other areas (e.g., public finance, industrial economics, auctions), in many cases obviating the need for the development of separate theories. For the present study, the role of government in terms of its impact on corruption can be tied to the public finance and fiscal federalism literature (Oates (1999), Rosen (1995)), to the industrial organization literature where government's monopoly functions enable opportunities for rent-seeking (Shleifer and Vishny (1993, 1999)), and to the strand of the literature about "rational" illegal acts (Becker (1968)).

Broadly speaking and drawing on the corruption definition mentioned above, the number of government units affects the number of public offices (or potential outlets opportunities for corrupt activity), while their size and scope influence the potential to abuse public office.

The literature has explored many avenues through which the decentralization of government can affect the quality of outcomes in the public sector, including the level of
corrupt activity.10 One strand of this literature focuses on the benefits of inter-jurisdictional competition that may be promoted with decentralized governmental structures. Arikan (2004), for example, has recently formalized this argument in the case of corrupt activity by showing that, under certain conditions, greater inter-jurisdictional competition for capital decreases the “optimal” amount of corrupt activity.11

Another strand of the literature focuses on monitoring and accountability. Klitgaard (1988), Tanzi (1994), Murphy et al. (1995), Shah (2006) and others have argued that a decentralized government structure increases the ability of its citizens to provide oversight of government officials and thus deters corrupt activity. However, Tanzi (1994), Prud’homme (1995), Lambsdorff and Teksoz (2004), and others have argued precisely the opposite – i.e., corruption may increase when more jurisdictions bring the government closer to the public enabling the development and nurturing of corrupt relations between bribe takers and bribe givers. Smaller jurisdictions could also engender more affordable bribes (i.e., greater petty corruption) and more regulations with more jurisdictions potentially imply greater opportunities to engage in corrupt behavior.

In another area related to this strand of the literature, Persson and Tabellini (2000) argue that bureaucrats responsible for a single task are more accountable than those who are charged with the delivery of multiple public services. Bureaucratic performance in the latter situation must be evaluated along several dimensions making it inherently more difficult to accomplish. Thus bureaucrats overseeing multiple tasks might be in a better

10 The following discussion borrows from the organizational structure used by Fisman and Gatti (2002a, pp. 327-329).

11 The argument that decentralized government structures lead to better outcomes in the public sector has been challenged by some. See Oates (1999) for a summary and appraisal of the literature on decentralization and public sector outcomes.
position to abuse their powers.12 This will be explored further below in our analysis of general-purpose and special-district local government structures.

A third stream in the literature focuses on the quality and competence of the bureaucracy. Here Tanzi (1996) and others have argued that the opportunity cost to bureaucrats and politicians in small jurisdictions to engage in corrupt activity is comparatively low since the prestige and financial rewards with such public positions are likely to be lower relative to their counterparts who preside over larger and more centralized jurisdictions. Media scrutiny is also likely to be more focused on large jurisdictions.

Viewed as a whole, the strands of literature summarized above are inconclusive as to benefits of decentralization as a corruption-deterrence strategy. On the positive side, it promotes more efficient outcomes in the public sector as local governmental units compete for mobile resources. It also yields an environment where citizens can have better oversight of the performance of their government officials. On the other hand, more decentralized governmental structures may be associated with lower-quality bureaucracy and decentralization promotes “contiguity” making it easier for citizens and officials to establish personal relationships conducive to corrupt arrangements (Tanzi (1994); also see footnote 12).

Previous empirical work has focused primarily on the effects of fiscal decentralization on corruption using cross-country data sets. Using a panel data set of 59 developed and developing countries, Fisman and Gatti (2002a) conclude that greater expenditure decentralization (share of total government spending undertaken by

12 Additionally, formulation of corrupt relations might be easier with longevity of institutions. On this count, general-purpose governments tend to be longer serving than special-purpose governments and one would expect to see more corrupt relations forming with the former.
subnational governments) is associated with lower levels of perceived corruption in a country. In contrast, Treisman’s (2002a) analysis of a similar set of countries finds that expenditure share is not a statistically significant determinant of corruption perceptions when potential problems associated with omitted variable bias are addressed. In terms of the structure of subnational governments, Treisman finds that the number of tiers of subnational governments (e.g., state, local) and first-tier subnational governments (e.g., states) with larger average geographic size are negatively associated with perceived corruption. More recently, Arikan (2004) investigates the relationship between decentralization measured by (1) the number of competing subnational governments, and (2) the degree of fiscal decentralization and the level of corruption for a sample of developing and developed countries. She concludes that both contribute to less corrupt outcomes, although the evidence is not statistically strong.

The use of cross-country data sets to analyze the determinants of corruption has been criticized by Prud’homme (1995), Bardhan and Mookherjee (2005), and others, because cultures and institutions may vary across countries in important ways that are difficult to control for in empirical modeling (see Paldam (2002) for a study emphasizing culture in a cross-national context). Expenditure decentralization measures, for example, fail to account for possible differences among countries in the amount of authority central governments give subnational governments in spending decisions.

An analysis of a single country mitigates to some extent unobserved heterogeneity among the units of observation. Fisman and Gatti (2000b) have investigated the relationship between conviction rates of public officials among the U.S. states and fiscal decentralization measured by the federal grant share of total state-local expenditures.
They report a positive relationship between corruption conviction rates and the importance of federal grants in the finance of subnational governments in the U.S.

Viewed as a whole, both the theoretical and empirical literature paints a mixed picture as to whether decentralized government is an effective institutional strategy to deter corruption. Yet, as noted in the introduction, policy makers in both the developed and developing world are looking at decentralization in the public sector as a strategy to improve the quality of governance (Tanzi (1996), Oates (1999)).

In the following analysis we will contribute to this debate by examining further the empirical link between decentralization and the corruption dimension to good governance. Our work is unique in that we consider both the scope of activities undertaken by the governmental unit (e.g., general-purpose versus special-purpose local government jurisdictions) and the degree of fragmentation of such units within the context of the subnational public sector in the United States.

MODEL AND DATA

The Achilles’ heel of empirical work on corruption is the inability to precisely measure the actual level of corrupt activity, since the perpetrators (i.e., bribe givers and bribe takers) have moral hazard issues surrounding voluntary disclosure of their acts. Having said that, researchers have used either indices of perceptions about corruption or actual convictions for abuse of public office to proxy for corruption (see Jain (2001), Lambsdorff (2006)). This paper takes the latter approach, i.e., we measure corruption by the number of convictions for the abuse of public office in a U.S. state.

13 Treisman (2007) provides an interesting analysis of the relative merits of using perceptions versus convictions corruption data.
(CORRUPTION) per 100,000 population in that state. The data we use are from the Public Integrity Section of the U.S. Department of Justice and pertain only to convictions that result from federal prosecutions.¹⁴ One advantage of restricting the analysis to only federal convictions is that the quality of federal enforcement across states is likely to be more homogeneous relative to state-level enforcement efforts.

Given that convictions for corruption in a state can fluctuate considerably from year to year (think about many convictions associated with a big corruption scandal in a state in one year and very few convictions in the next), we use total convictions in a state over three time periods spanning 1993-2007. Specifically, a panel data set is analyzed consisting of the 50 states over the three five-year time periods: 1993-1997 (period 1), 1998-2002 (period 2), and 2003-2007 (period 3).

In our sample, the mean number of convictions for a five-year period per 100,000 population was 1.593 with a standard deviation of 1.06. In only one state for one period (Colorado in period 1) were there no corruption convictions. The highest conviction rates were in North Dakota (5.97 during period 3) and Alabama (5.08 during period 2). Sample mean conviction rates over the 15-year period increased slightly from 1.43 in the 1993-1997 period to 1.75 in the 2003-2007 period.

To explain the incidence of corruption across the 50 states (CORRUPTION) we begin with the following base model consisting of the number of local governmental units, a measure of fiscal decentralization variables, and two standard control variables used in empirical modeling of corruption:

¹⁴ Corruption prosecutions from state district attorneys or attorneys general are not available and hence are excluded from the analysis. Such prosecutions, however, are estimated to be only around 20 percent of the total (Corporate Crime Reporter (2004)).
\[CORRUPTION_{it} = \beta_0 + \beta_1 GOVTP_{it} + \beta_2 LOCALEXPSH_{it} + \beta_3 \text{LogINCOMEpc}_{it} + \beta_4 \text{LogPOP}_{it} + \alpha_i + e_{it} \]

(1)

where

\[GOVTP \] = the number of normalized local government units in a state,

\[LOCALEXPSH \] = local government expenditures as a share of total state-local government expenditures,

\[\text{LogINCOMEpc} \] = real state per-capita personal income (in logs),

\[\text{LogPOP} \] = state population (in logs),

\[\alpha_i \] = a state-specific error term,

\[e_{it} \] = a classical disturbance term, and

The first explanatory variable in the above model (\(GOVTP \)) focuses on local government size, measured in terms of the average number of local governments in a state per 100,000 population. Larger values for \(GOVTP \) imply a more fragmented local government structure whereby each governmental unit on average serves a smaller population. The second right-hand side variable, \(LOCALEXPSH \), is a measure of fiscal decentralization that is similar to what that other researchers have use in the past.

As control variables, income, or economic prosperity, is a standard control variable used in nearly all corruption studies (Serra (2006)).\(^{15}\) A more prosperous populace, benefiting from greater economic development, ceteris paribus, is less likely to engage in illegal acts. To account for this in the context of U.S. states we use the log of

\(^{15}\) Some studies, for instance, have examined the effect of income inequality on corruption (Alt and Lassen (2008), Glaeser and Saks (2006)).
real per-capita personal income ($\log{\text{INCOMEpc}}$) as a control variable. Greater population ($\log{\text{POP}}$) captures the competition for resources. Other things being the same, greater number of people competing for resources (and favors) induces some to offer bribes in order to obtain preferential treatment.

To address the possibility of reverse causality in equation (1) each right-hand side regressor is measured in terms of beginning-of-period values. Thus 1992 values were used for period 1, 1997 values for period 2, and 2002 values for period 3. Further, a random effects, state-specific, error structure is assumed in equation (1) to control for unobserved heterogeneity across the states. This assumption will be formally tested in the analysis that follows. Descriptive statistics, complete variable definitions, and data sources for all variables included in the models estimated below can be found in Table 2.

Four variations of equation (1) are estimated using Ordinary Least Squares (OLS) and the results are reported as Model 1.1 through Model 1.4 in Table 3. Model 1.1 uses the number of normalized local governments of all types as a measure of local government structure (ALLGOVTP). The other three models address the conjecture made by Persson and Tabellini (2000) that the accountability of bureaucrats is easier for governmental units with limited responsibilities. Model 1.2 considers only the number of (normalized) general-purpose governments (GP戈VTP) and Model 1.3 considers only special-purpose local governmental units (SP戈VTP). Model 1.4 includes both types of local governments separately in the same model.

The results paint a mixed picture on the effect of decentralization on corruption. With respect to local government structure, more local governments of all types serving a given population (ALLGOVTP) are positively related to the level of state corruption. The parameter estimate associated with this variable is statistically significant at the 5 percent
level (Model 1.1). Further insight is gained when general-purpose and special purpose governments are considered separately. In particular, Model’s 1.2 and 1.4 offer strong statistical support for the conclusion that the incidence of corruption is greater in states where general-purpose local governmental units (municipalities, towns, and townships) serve a smaller population on average (i.e., $GGOVTP$ takes on larger values), other things equal. This variable is statistically-significant at better than the five per cent level in both models. General-purpose governments provide officials with greater leeway in “fudging” their actions. Further, the relative longevity of such governments is also more conducive to the formation of corrupt relations.

In contrast to findings for general-purpose governments, the hypothesis that the decentralization of special-purpose governments ($SPGOVTP$) has little effect on corruption cannot be consistently rejected at conventional levels of significance. The resulting (positive) coefficient is marginally significant only in Model 1.3. This finding supports the argument that such units of government are more accountable to its citizens because the link between the bureaucrat and the service performed is clearer.

The results for the fiscal decentralization variable ($LOCALEXPSH$) are in line with the view that this dimension of decentralization promotes a less corrupt government. This conclusion holds and is statistically strong across all four models presented in Table 3.16 The finding is consistent with what Fisman and Gatti (2002a) and Arikan (2004) have found using cross-country data sets.

As to the control variables, the parameter estimate for the income variable ($\log INCOMEpc$), capturing economic development or prosperity, is statistically

16 Each model presented in this paper was also estimated using local government tax share rather than spending share. The spending and tax share variables are highly correlated (0.93) and the conclusions drawn in this paper are unaffected with the exception that the parameter estimate for the tax share variable is statistically weaker in some cases than it is for the spending share variable.
insignificant in all four models. Finally, the effect of population is positive and consistently significant – supporting the view that greater competition for favors increases corruption as the discount rates of favor seekers (bribe givers) increase.

Reported towards the bottom of Table 3 is the Lagrange Multiplier test for the absence of state-specific fixed- or random-effects. In all four cases, the results strongly reject the hypothesis that such effects are absent and thereby provide evidence favoring either a fixed- or random-effects specification of equation (1). Further, the results of a Hausman test, reported at the bottom of Table 3, cannot reject a random effects model in favor a fixed-effects model at conventional levels of statistical significance.

To summarize the key insight, we find that there are different impacts on corruption between fiscal decentralization and the fragmentation of local government structures. While the former promotes less corrupt outcomes, greater fragmentation has the potential to wipe out some of the corruption-reducing gains from fiscal decentralization. The related literature has almost exclusively focused of the fiscal decentralization-corruption relation. Appropriate caution, however, needs to be exercised when drawing conclusions from the results of the base model since it does not consider some factors that may influence corruption that have been shown in the literature to influence corrupt activity.

17 Cross-country studies of corruption determinants, using primarily indices of corruption perceptions to measure corruption, mostly find economic prosperity to have a strong negative impact on corruption (see Serra (2006)). The variation in income in these studies (many of which pool developed and developing countries) is typically much larger than the variation in income among the US states. It may be that the income variation among the US states is too little to reveal a statistically-significant influence of income on corruption.

18 The decentralization parameter estimates presented in Table 3 (Model 1.2) suggest that, other things equal, an increase in the (normalized) number of general-purpose local governments from the sample median (13) to the 90th percentile among all states (51) would increase corruption rates measured by the dependent variable by 0.36 or approximately 22% relative to the sample mean for corruption rates. In contrast, a reduction in the local share of total state-local spending from the sample median (52%) to the 10th percentile in the sample (38%) would increase corruption rates by approximately 0.81 or 50 percent.
Omitted variable bias and other econometric issues may be raised from the estimation of this simple model, something we turn to in the next section.

ROBUSTNESS CHECKS

In this section we perform a series of robustness checks regarding the conclusions presented above. These involve consideration of additional control variables, data and simultaneity issues.

A. **Intergovernmental Grants**

Grants by the Federal government to state and local governments are a dimension of fiscal decentralization that some have argued can influence the level of corrupt activity in states (Fisman and Gatti (2002b)). It is argued that revenue decentralization (state-local authority over revenue sources) may be more important in corruption control than expenditure decentralization (state-local expenditures financed by federal grants) since state-local officials are less accountable to taxpayers with respect to the expenditure of resources generated by higher levels of government. Using cross-sectional data for the U.S. states, Fisman and Gatti find evidence in support of the hypothesis that the significance of federal transfers in state budgets is associated with greater conviction rates of public officials – and thereby more corruption.

As our first robustness test we add FGRANTSH, the federal grant share of total state-local expenditures, as an additional fiscal decentralization measure to the base models stemming from equation (1). The results are reported in Table A-1 in the Appendix to this paper as Model’s 1.1A – 1.4A. In each case the parameter estimate on the grant share variable is not statistically significant. Thus, we are unable to confirm earlier findings in the literature (Fisman and Gatti (2002b)). It could be the case that
monitoring, administration and compliance of federal grants might have been
strengthened in recent years. The conclusions for the other decentralization measures
considered in our analysis are unchanged from what was reported above (also see Table 3).

B. Cross-Section Data Set and Additional Control Variables

As a second robustness check we convert our panel data set into a cross-section
data set that reflects average values for corruption and other variables in the model for the
entire 1993-2007 period. This is sometimes referred to as a “between” regression in
panel data analysis. Corruption convictions tend to be episodic in nature and hence
highly variable in any given state from one year to the next. With the cross-sectional data
set we average out such variation over a longer time period as a check to see if the
conclusions drawn above are consistent with the use of this alternative time period to
measure of the incidence of state corruption.

The OLS results are reported in Table A-2 in the Appendix. For the most part,
our conclusions regarding the decentralization measures above still hold across the four
models, both in terms of statistical significance and the order of magnitude of the
parameter estimates of the individual variables.19 An exception is that the special
purpose government variable, marginally statistically significant in Model 1.3 (Table 3),
is no longer significant at conventional levels.

As an additional robustness check we present three expanded versions of the base
model using additional control variables that have been found in the literature to explain
corrupt activity by public officials. First, past empirical research has offered evidence

19 A variation of Model 2.4A also included a state’s Protestant population as an additional regressor which
has been argued to be a corruption deterrent in some cross-county investigations of corruption (e.g., La
Porta et al. (1999), Triesman (2000)). The resulting coefficient for the U.S. was statistically insignificant
(details available upon request).
that the level of corrupt activity in a state is affected by the sheer size of the government (Goel and Nelson (1998), Rose-Ackerman (1999) and Jain (2001)). A larger government might increase corruption opportunities when it increases bureaucracy. Alternatively, it might lower corruption when a larger government size is associated with greater checks and balances (Shleifer and Vishny (1999)). Following Goel and Nelson (2007), we include three measures of per capita government activity in a state, including gross state product from federal government civilian and defense spending in a given state (**GSP**\(^{\text{federal}, \text{defense}}\)) and gross state product originating with state-local governments (**GSP**\(^{\text{state}}\)). This level of fiscal disaggregation enables us to capture how defense and non-defense government spending may differ in terms of their impact on corruption (for example, due to differences in contracting/procurement modes). Further, the size or lumpiness of these outlays as well as the discretionary power of the bureaucrats in charge of awarding contracts may be different across defense and non-defense sectors.

Second, periods of high unemployment act as somewhat of a restraint on corrupt activity for the fear of job loss upon apprehension.\(^{20}\) We add a variable measuring the state unemployment (**UN**) as an additional indicator of state economic conditions. Finally, borrowing from Becker’s (1968) “crime and punishment” model of criminal behavior, we include three law enforcement measures in the expanded model. While one would generally expect greater enforcement to lower corruption, some enforcement agencies might themselves be corrupt. We consider state-local employment in the following three enforcement agencies: corrections employment (**Corrections**), judicial

\(^{20}\) On the other hand, competition among bribe givers might be fiercer during periods of high unemployment.
employment (Judicial), and police employment (Police). There are significant qualitative differences across enforcement agencies (see Priks (2007)). For example, whereas corrections employees face convicts (or their families) as potential bribe givers, judicial and police employees face both guilty and the innocent or accused as bribe givers. The relative discount rates of the innocent or accused might be different than the guilty. Furthermore, the three enforcement agencies considered might face different degrees of internal (departmental) oversight. For example, a policeman in the field accosting a suspect, unlike a judge or a corrections official, may have greater leeway in accepting a bribe. Our consideration of relative effects of different enforcement bodies is unique to the literature that examines the corruption-government decentralization nexus.

The OLS results of the expanded model using the cross-sectional data set are reported in Table 4. Again, the general conclusions made above regarding the effects of the government structure variables (GPGOVTP and SPOVTP) on the level of corrupt activity continue to hold as the parameter estimates are similar in magnitude and in statistical significance to what are reported Table 3. In addition, while the parameter estimates for local government expenditure share variable (LOCALEXPSH) are still negative, they are smaller in magnitude (in absolute value) than what was reported earlier.

Turning briefly to the results for the control variables, both defense spending (GSPdefense) and federal spending (GSPfederal) at the state level, do not appreciably affect corruption. On the other hand, state and local gross state product (GSPstate) consistently adds to corruption. Bribe givers at the state level, being physically closer to their state officials, might perceive themselves more capable (empowered) of influencing outcomes via bribes.
Among state economic conditions, greater unemployment (UN) does not significantly influence corruption (see Goel and Rich (1989) for earlier evidence in this regard); while the effect of state economic prosperity (Log\textit{INCOMEpc}) is negative and significant, in contrast to the conclusions drawn above. Of the three enforcement variables, greater judicial employment (\textit{Judicial}) does not uniformly check corruption, while the influence of \textit{ Corrections} is statistically insignificant.21 Consistent with the arguments above, greater police (\textit{Police}) in fact contributes to corruption. Police in the field have some leeway in apprehending suspects and are more vulnerable to corrupt practices.22

\textbf{C. Potential Endogeneity of Government Units}

As another test of the robustness of our findings we consider the possible endogeneity of government structure. As noted in an earlier section, the structure of local governments has changed relatively little over time, especially the overall number of general-purpose units. It is still possible, however, that there may be reverse causality between the dependent variable and the government structure variables. More corrupt activity, for example, may lead to pressure for a less fragmented local government structure (consolidations) if that creates a more conducive environment to engage in corrupt activity. This is especially pertinent in a democracy like the United States with many influential interest groups.

21 One reason for the mixed results on \textit{Judicial} might be that these employees, unlike corrections and police, include both elected and appointed. This difference can affect their propensities to abuse official powers. Priks (2007) provides some theoretical arguments regarding why the judiciary might have different effects on corruption.

22 Also, given that the corruption is measured here in terms of convictions, the results are consistent with the observation that \textit{Police} is serving as a proxy for differential enforcement efforts among the states in fighting corrupt activity.
To address this, Model’s 1.2 and 1.3 were re-estimated using two-stage least squares estimation. The government structure measures in each of these equations \((GPGOVTP, SGOVTP)\) were specified as an endogenous right-hand-side variable.

Following past empirical studies of the determinants of the structure of local governments in the U.S (Nelson (1990) and Fisher and Wassmer (1998)), the log of state land area \((LogLand)\) and an Age Herfindahl Index were used as additional instrumental variables in the estimation of the two models. The latter variable is a measure of the concentration of population by age within a state. Preferences for local government services (e.g., schools, police and fire protection, health related services) can be expected to be somewhat related to age. Greater age homogeneity may therefore imply more uniformity of preferences for local services and hence lessen the need for a more fragmented local government structure to accommodate the variation among the populace in the demand for local government services. State land area has been used in past studies to account for the influence of scale economies and transactions costs on the optimal size of local governments.

The two-stage least squares results are presented in Table A-3 in the Appendix. In general, the findings for the key variables of interest are consistent with the results reported in Table 3, both in terms of the order of magnitude of the parameter estimates and their statistical significance. More fragmented local government structures contribute to an increased level of corrupt activity. The coefficient on \(LOCALEXPSH\) is negative and significant, while the effect of income is insignificant. In contrast to Table 3, the parameter estimate on \(\text{LogPOP}\) is no longer statistically significant in Model 1.2B.

For both models, a Sargan overidentification test (reported towards the bottom of Table A–3) could not reject the null hypotheses of no correlation between the error term
and the instruments. Further, the first-stage F-test (also reported in Table A–3) showed that the instruments were jointly significant as determinants of the government structure variables. We turn next to the concluding section.

CONCLUDING REMARKS

The present research adds to the literature on the nexus between government and corruption by examining further the influence of government decentralization and the level of corrupt activity. Previous work in this area has focused primarily on fiscal decentralization – the degree to which lower levels of government have spending and tax authority relative to higher levels of government. We bring additional evidence to bear on this question in the context of the U.S. states. Beyond this, we also address the question of whether the structure of local governments – assessed both in terms of the scope of services offered and the degree of fragmentation – has a bearing on the incidence of corruption.

The evidence suggests that both the size and scope of local governments can play a role in explaining the level of conviction rates of public officials in a state. In particular, more general-purpose governmental units serving a given population are associated with greater levels of corruption while the evidence on the effects of special-purpose governments is mixed. The finding with respect to general-purpose governments is robust across alternate specifications. As to fiscal decentralization, the evidence presented here for U.S. governments is consistent with the findings that some have found in the context of cross-country data sets that greater decentralization is associated with lower levels of corrupt activity (e.g., Fisman and Gatti (2002a)). Overall, our results
uniquely flush out the tension between local government structure and fiscal
decentralization in terms of their impacts on corruption.

In other areas, larger state-local sectors - measured by per capita gross state
product originating from these sectors - is shown as contributing to corruption. We also
find different relative efficacies of monitoring agencies, with police employment
increasing corruption, perhaps reflecting the effects of greater enforcement efforts given
that corruption is measured by conviction rates in our analysis. No clear picture on the
effects of judicial and corrections agencies on corruption could be established. Regarding
the effects of state economic conditions, greater state unemployment and greater
economic prosperity have no appreciable impact, although the results for the latter are
sensitive to general model specification. The positive population effect on corruption
that we find is consistent with the notion that the competition for favors intensifies in
more populous states as individuals try to attain favors via legal and illegal (corrupt)
means.

In recent decades there has been a trend around the globe towards greater
decentralization as a strategy to improve outcomes in the public sector. The literature on
the determinants of corruption has provided evidence in support of that strategy by
highlighting the potential favorable consequences of fiscal decentralization as an
institutional arrangement that can deter corrupt activity by public officials. The key
insight from our study is that not all types of decentralization may be corruption
reducing. In particular, we demonstrate in this paper that it is possible that any
corruption-reducing gains from fiscal decentralization may be offset or mitigated if such
decentralization is accompanied by more fragmented subnational government structures.
Recently policy initiatives that have lead to an increase the number of subnational units
of government in the US and elsewhere may have a downside that was not envisioned by supporters of these initiatives. The present analysis, however, only pertains to the US. It remains to be seen, however, how our findings translate to the different nations.
TABLE 1

Government Decentralization in the United States

Panel A: Physical Decentralization, 2002

<table>
<thead>
<tr>
<th>Government Type</th>
<th>United States</th>
<th>Highest State</th>
<th>Mean</th>
<th>Lowest State</th>
</tr>
</thead>
<tbody>
<tr>
<td>General-purpose</td>
<td>38,967</td>
<td>2,824 (IL)</td>
<td>779</td>
<td>4 (HI)</td>
</tr>
<tr>
<td>County</td>
<td>3,034</td>
<td>254 (TX)</td>
<td>63</td>
<td>0 (note 2)</td>
</tr>
<tr>
<td>Municipal, Town or Township</td>
<td>35,933</td>
<td>2,722 (IL)</td>
<td>719</td>
<td>1 (HI)</td>
</tr>
<tr>
<td>Special Purpose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent School Districts</td>
<td>48,558</td>
<td>4,079 (IL)</td>
<td>971</td>
<td>14 (AK)</td>
</tr>
<tr>
<td>Other Single-function Districts</td>
<td>13,506</td>
<td>1,089 (TX)</td>
<td>294</td>
<td>0 (note 3)</td>
</tr>
<tr>
<td>Multiple-function Districts</td>
<td>31,877</td>
<td>3,103 (IL)</td>
<td>638</td>
<td>14 (AL)</td>
</tr>
<tr>
<td></td>
<td>3,175</td>
<td>753 (TX)</td>
<td>64</td>
<td>0 (note 4)</td>
</tr>
</tbody>
</table>

Panel B: Fiscal Decentralization, 2001-04

<table>
<thead>
<tr>
<th>Category</th>
<th>United States</th>
<th>Highest State</th>
<th>Mean</th>
<th>Lowest State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Revenue Share of State-local Revenues</td>
<td>64.2 (NV)</td>
<td>49.7</td>
<td>21.4 (HI)</td>
<td></td>
</tr>
<tr>
<td>Local Expenditure Share of State-local Expenditures</td>
<td>64.7 (NV)</td>
<td>49.8</td>
<td>22.0 (HI)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Descriptive statistics exclude the District of Columbia.
2. Connecticut and Hawaii have no county governments.
3. Alaska, Hawaii, Maryland, and North Carolina.
4. Alaska and Rhode Island.
5. Average of fiscal year 2001-02 and 2003-04. Data for fiscal year 2002-03 are not available.

Sources:
Fiscal Decentralization: Authors’ calculations based on various years of the Census Bureau, State and Local Government Finances, Table 1.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORRUPTION</td>
<td>Average federal public corruption convictions per 100,000 population (1.593; 1.06)</td>
<td>U.S. Department of Justice (1989, 1999, 2007)</td>
</tr>
<tr>
<td>ALLGOVTP</td>
<td>Number of all local governments in a state per 100,000 population (54.77; 71.18)</td>
<td>U.S. Census Bureau, 2002 Census of Governments, Vol. 1, Government Organization, Table 3, http://www.census.gov/prod/2003pubs/gc021x1.pdf</td>
</tr>
<tr>
<td>GPGOVTP</td>
<td>Number of general-purpose local governments in a state per 100,000 population (25.76; 45.00)</td>
<td>U.S. Census Bureau, 2002 Census of Governments, Vol. 1, Government Organization, Table 3, http://www.census.gov/prod/2003pubs/gc021x1.pdf</td>
</tr>
<tr>
<td>SPGOVTP</td>
<td>Number of special-purpose local governments in a state per 100,000 population (29.01; 32.26)</td>
<td>U.S. Census Bureau, 2002 Census of Governments, Vol. 1, Government Organization, Table 3, http://www.census.gov/prod/2003pubs/gc021x1.pdf</td>
</tr>
<tr>
<td>LOCALEXPSH</td>
<td>Local government expenditures as a percent of total state-local government expenditures (51.01; 9.18)</td>
<td>U.S. Census Bureau, State and Local Government Finances by Level of Government and by year (selected years), http://www.census.gov/govs/estimate.html</td>
</tr>
<tr>
<td>FGRANTSH</td>
<td>Federal grant share of total state-local government expenditures (0.19; 0.13)</td>
<td>U.S. Census Bureau, State and Local Government Finances by Level of Government and by year (selected years), http://www.census.gov/govs/estimate.html</td>
</tr>
<tr>
<td>LogINCOMEpc</td>
<td>Log of real per-capita income, measured in thousands of dollars, 1982-84$ (2.71; 0.15)</td>
<td>U.S. Bureau of Economic Analysis, http://www.bea.gov/regional/index.htm</td>
</tr>
<tr>
<td>Corrections</td>
<td>Corrections employment as percent of total state-local employment (3.83; 1.11)</td>
<td>U.S. Census Bureau http://www.census.gov/govs/www/apesstl.html</td>
</tr>
<tr>
<td>Judicial</td>
<td>Judicial employment as percent of total state-local employment (2.28; 0.69)</td>
<td>U.S. Census Bureau http://www.census.gov/govs/www/apesstl.html</td>
</tr>
<tr>
<td>Police</td>
<td>Police employment as percent of total state-local employment (3.76; 0.84)</td>
<td>U.S. Census Bureau http://www.census.gov/govs/www/apesstl.html</td>
</tr>
</tbody>
</table>

Note: Convictions data are based on state-level observations summed over all years for the following time periods: 1993-1997 (period 1), 1998-2002 (period 2), and 2003-2007 (period 3). All remaining values are measured in terms of beginning-of-period values as described in text with the exception of the Age Herfindahl Index which is based on 1995 data.
TABLE 3

Corruption and State-Local Decentralization: Base Models
(Dependent variable: *CORRUPTION*)

<table>
<thead>
<tr>
<th></th>
<th>Model 1.1</th>
<th>Model 1.2</th>
<th>Model 1.3</th>
<th>Model 1.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>All local governments</td>
<td>0.006**</td>
<td>0.009**</td>
<td>0.009**</td>
<td></td>
</tr>
<tr>
<td>[ALLGOVTP]</td>
<td>(3.2)</td>
<td>(3.5)</td>
<td></td>
<td>(2.9)</td>
</tr>
<tr>
<td>General-purpose governments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[GPGOVTP]</td>
<td></td>
<td>0.009**</td>
<td>0.009**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.5)</td>
<td>(2.9)</td>
<td></td>
</tr>
<tr>
<td>Special-purpose governments</td>
<td></td>
<td></td>
<td>0.008*</td>
<td>-0.0002</td>
</tr>
<tr>
<td>[SPGOVTP]</td>
<td></td>
<td></td>
<td>(1.8)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Local Government Expenditure</td>
<td>-0.059**</td>
<td>-0.054**</td>
<td>-0.056**</td>
<td>-0.053**</td>
</tr>
<tr>
<td>Share [LOCALEXPSh]</td>
<td>(3.9)</td>
<td>(3.7)</td>
<td>(3.4)</td>
<td>(3.4)</td>
</tr>
<tr>
<td>Per Capita Personal Income</td>
<td>0.135</td>
<td>0.119</td>
<td>0.157</td>
<td>0.133</td>
</tr>
<tr>
<td>[LogINCOMEpc]</td>
<td>(0.2)</td>
<td>(0.2)</td>
<td>(0.2)</td>
<td>(0.2)</td>
</tr>
<tr>
<td>Population</td>
<td>0.447**</td>
<td>0.373**</td>
<td>0.370**</td>
<td>0.369**</td>
</tr>
<tr>
<td>[LogPOP]</td>
<td>(2.7)</td>
<td>(2.5)</td>
<td>(2.0)</td>
<td>(2.1)</td>
</tr>
<tr>
<td>Lagrange Multiplier Statistic</td>
<td>25.0**</td>
<td>24.3**</td>
<td>29.9**</td>
<td>24.3**</td>
</tr>
<tr>
<td>Hausman Test Statistic</td>
<td>6.0</td>
<td>4.3</td>
<td>7.1</td>
<td>6.2</td>
</tr>
<tr>
<td>(fixed – vs. random effects)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The number of observations is 150 and variable definitions are provided in Table 2. All equations are estimated as random effects model for the cross-sectional (individual state) observations. The figures in parentheses are t-statistics expressed in absolute value; ** and *, respectively, denote statistical significance at the 5% (or better) and 10% levels.
TABLE 4

Corruption and State-Local Decentralization: Additional Considerations
(Dependent variable: CORRUPTION)

<table>
<thead>
<tr>
<th></th>
<th>Model 2.1</th>
<th>Model 2.2</th>
<th>Model 2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-Local Decentralization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General-purpose governments [GPGOVTP]</td>
<td>0.011**</td>
<td>0.0007</td>
<td>0.002</td>
</tr>
<tr>
<td>Special-purpose governments [SPGOVTP]</td>
<td></td>
<td>0.011**</td>
<td>0.002</td>
</tr>
<tr>
<td>Local Government Expenditure Share [LOCALEXPSH]</td>
<td>-0.043**</td>
<td>-0.048**</td>
<td>-0.045**</td>
</tr>
<tr>
<td>Government Economic Activity in a State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross State Product – Federal Government (excluding Defense) [GSPfederal]</td>
<td>0.002</td>
<td>0.0007</td>
<td>0.002</td>
</tr>
<tr>
<td>Gross State Product – Federal Defense [GSPdefense]</td>
<td>0.001</td>
<td>0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>Gross State Product – State & Local [GSPstate]</td>
<td>0.005**</td>
<td>0.004*</td>
<td>0.005**</td>
</tr>
<tr>
<td>State Economic Conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Unemployment Rate [UN]</td>
<td>0.059</td>
<td>0.004</td>
<td>0.060</td>
</tr>
<tr>
<td>Population [LogPOP]</td>
<td>0.287**</td>
<td>0.364**</td>
<td>0.318**</td>
</tr>
<tr>
<td>Law Enforcement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrections Employment [Corrections]</td>
<td>-0.050</td>
<td>0.011</td>
<td>0.055</td>
</tr>
<tr>
<td>Judicial Employment [Judicial]</td>
<td>-0.279**</td>
<td>0.229</td>
<td>0.280**</td>
</tr>
<tr>
<td>Police Employment [Police]</td>
<td>0.319**</td>
<td>0.348**</td>
<td>0.318**</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.28</td>
<td>0.19</td>
<td>0.28</td>
</tr>
<tr>
<td>F-value</td>
<td>6.2**</td>
<td>4.1**</td>
<td>5.7**</td>
</tr>
</tbody>
</table>

Note: The number of observations is 149 and variable definitions are provided in Table 2. All equations are estimated as OLS. No fixed-effects or random-effects are assumed. An intercept is included in all models, but the corresponding results are not reported to conserve space. The figures in parentheses are robust t-statistics expressed in absolute value; ** and *, respectively, denote statistical significance at the 5% (or better) and 10% levels.
APPENDIX

TABLE A – 1

Corruption and State-Local Decentralization: Influence of Federal Grants

(Dependent variable: CORRUPTION)

<table>
<thead>
<tr>
<th>variable</th>
<th>Model 1.1A</th>
<th>Model 1.2A</th>
<th>Model 1.3A</th>
<th>Model 1.4A</th>
</tr>
</thead>
<tbody>
<tr>
<td>All local governments [ALLGOVTP]</td>
<td>0.006** (3.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General-purpose governments [GPGOVTP]</td>
<td></td>
<td>0.009** (3.5)</td>
<td></td>
<td>0.009** (2.8)</td>
</tr>
<tr>
<td>Special-purpose governments [SPGOVTP]</td>
<td></td>
<td></td>
<td>0.009* (1.9)</td>
<td>0.0001 (0.03)</td>
</tr>
<tr>
<td>Local Government Expenditure Share [LOCALEXPSH]</td>
<td>-0.058** (3.8)</td>
<td>-0.053** (3.6)</td>
<td>-0.056** (3.4)</td>
<td>-0.053** (3.4)</td>
</tr>
<tr>
<td>Federal Grant Share of Total State Local Expenditures [FGRANTSHP]</td>
<td>-0.302 (0.6)</td>
<td>-0.222 (0.4)</td>
<td>-0.283 (0.5)</td>
<td>-0.225 (0.4)</td>
</tr>
<tr>
<td>Per Capita Personal Income [LogINCOMEpc]</td>
<td>0.127 (0.2)</td>
<td>0.113 (0.2)</td>
<td>0.151 (0.2)</td>
<td>0.128 (0.2)</td>
</tr>
<tr>
<td>Population [LogPOP]</td>
<td>0.442** (2.7)</td>
<td>0.366** (2.4)</td>
<td>0.370** (2.0)</td>
<td>0.368** (2.1)</td>
</tr>
</tbody>
</table>

Lagrange Multiplier Statistic 24.8** 24.4** 30.0** 24.3**
Hausman Test Statistic (fixed – vs. random effects) 6.2 4.5 7.4 6.3

Note: The number of observations is 150 and variable definitions are provided in Table 2. All equations are estimated as random effects model for the cross-sectional (individual state) observations. An intercept is included in all models, but the corresponding results are not reported to conserve space. The figures in parentheses are t-statistics expressed in absolute value; ** and *, respectively, denote statistical significance at the 5% (or better) and 10% levels.
TABLE A – 2

Corruption and State-Local Decentralization: Cross-Section
(Dependent variable: CORRUPTION)

<table>
<thead>
<tr>
<th></th>
<th>Model 2.1A</th>
<th>Model 2.2A</th>
<th>Model 2.3A</th>
<th>Model 2.4A</th>
</tr>
</thead>
<tbody>
<tr>
<td>All local governments [ALLGOVTP]</td>
<td>0.001**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General-purpose governments [GPGOVTP]</td>
<td></td>
<td>0.002**</td>
<td></td>
<td>0.002**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.2)</td>
<td></td>
<td>(3.4)</td>
</tr>
<tr>
<td>Special-purpose governments [SPGOVTP]</td>
<td></td>
<td></td>
<td>0.002</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.5)</td>
<td>(0.3)</td>
</tr>
<tr>
<td>Local Government Expenditure Share [LOCALEXPSH]</td>
<td>-0.013**</td>
<td>-0.012**</td>
<td>-0.013**</td>
<td>-0.012**</td>
</tr>
<tr>
<td></td>
<td>(4.8)</td>
<td>(4.3)</td>
<td>(4.2)</td>
<td>(4.5)</td>
</tr>
<tr>
<td>Per Capita Personal Income [LogINCOMEpc]</td>
<td>-0.136</td>
<td>-0.150</td>
<td>-0.148</td>
<td>-0.146</td>
</tr>
<tr>
<td></td>
<td>(0.7)</td>
<td>(0.8)</td>
<td>(0.7)</td>
<td>(0.7)</td>
</tr>
<tr>
<td>Population [LogPOP]</td>
<td>0.098**</td>
<td>0.083**</td>
<td>0.090**</td>
<td>0.087**</td>
</tr>
<tr>
<td></td>
<td>(3.1)</td>
<td>(2.7)</td>
<td>(2.4)</td>
<td>(2.6)</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.26</td>
<td>0.27</td>
<td>0.18</td>
<td>0.25</td>
</tr>
<tr>
<td>F-value</td>
<td>5.2**</td>
<td>5.5**</td>
<td>3.5**</td>
<td>4.3**</td>
</tr>
</tbody>
</table>

Note: The number of observations is 50 and variable definitions are provided in Table 2. The corresponding results with pooled data are in Table 3. All equations are estimated as OLS for the cross-sectional (individual state) observations. An intercept is included in all models, but the corresponding results are not reported to conserve space. The figures in parentheses are robust t-statistics expressed in absolute value; ** and *, respectively, denote statistical significance at the 5% (or better) and 10% levels.
<table>
<thead>
<tr>
<th></th>
<th>Model 1.2B</th>
<th>Model 1.3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>General-purpose governments [GPGOVTP]</td>
<td>0.001**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.3)</td>
<td></td>
</tr>
<tr>
<td>Special-purpose governments [SPGOVTP]</td>
<td></td>
<td>0.018**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.5)</td>
</tr>
<tr>
<td>Local Government Expenditure Share [LOCALEXPSH]</td>
<td>-0.061**</td>
<td>-0.073**</td>
</tr>
<tr>
<td></td>
<td>(5.0)</td>
<td>(5.5)</td>
</tr>
<tr>
<td>Per Capita Personal Income [LogINCOMEpc]</td>
<td>-0.590</td>
<td>-0.270</td>
</tr>
<tr>
<td></td>
<td>(0.9)</td>
<td>(0.4)</td>
</tr>
<tr>
<td>Population [LogPOP]</td>
<td>-0.017</td>
<td>0.655**</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(3.5)</td>
</tr>
<tr>
<td>(F)-value</td>
<td>6.43**</td>
<td>8.24**</td>
</tr>
<tr>
<td>(First-stage F)-statistic for joint significance of instruments</td>
<td>7.71**</td>
<td>18.86***</td>
</tr>
<tr>
<td>Over-identification restrictions (Sargan) test, (P)-value</td>
<td>0.37</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Note: The number of observations is 150 and variable definitions are provided in Table 2. The results reported are second-stage results of 2SLS applied to Model’s 1.2 and 1.3. The government structure variables in each of these equations (GPGOVTP, SPGOVTP) were specified as endogenous right-hand-side variable and the log of state land area and an age Herfindahl Index were used as instruments. An intercept was included in all models, but the corresponding results are not reported to conserve space. The figures in parentheses are robust t-statistics expressed in absolute value; ** and *, respectively, denote statistical significance at the 5% (or better) and 10% levels.
REFERENCES

Alt, J.E. and D.D. Lassen, “Inequality and Corruption: Evidence from the U.S. States”,

2003, F632-F652.

of Public Economics, 89, 2005, 1157-1189.

1997, 1289-1332.

Bardhan, P. and D. Mookherjee, “Decentralization, Corruption and Government
Accountability”, in S. Rose-Ackerman (ed.), International Handbook

Basu, K., S. Bhattacharya and A. Mishra, “Notes on Bribery and the Control of

Becker, G.S. and G.J. Stigler, “Law Enforcement, Malfeasance and the Compensation of

Brennan, G. and J.M. Buchanan, The Power to Tax, New York: Cambridge University
Brueckner, J., “Fiscal Decentralization in Developing Countries: The Effects of Local

Carr, J.B. and R.C. Feiock (eds.), City-county Consolidation and its Alternatives:

444-471.

Transfer Programs”, Public Choice, 113, 2002b, 25-35.

2006, 1053-1072.

489-504.

U.S. Department of Justice, Public Integrity Section Criminal Division, “Report to Congress on the Activities and Operations of the Public Integrity Section,” (selected years).
