CREATEs Research Paper 2010-16

Estimation of Jump Tails

Tim Bollerslev and Viktor Todorov
Estimation of Jump Tails

Tim Bollerslev† and Viktor Todorov‡

First Draft: March 2010
This Version: June 2, 2011

Abstract
We propose a new and flexible non-parametric framework for estimating the jump tails of Itô semimartingale processes. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its “intensity”, that only utilizes the weak assumption of regular variation in the jump tails, along with in-fill asymptotic arguments for directly estimating the “large” jumps. The procedure assumes that the “large” sized jumps are identically distributed, but otherwise allows for very general dynamic dependencies in jump occurrences, and importantly does not restrict the behavior of the “small” jumps, nor the continuous part of the process and the temporal variation in the stochastic volatility. On implementing the new estimation procedure with actual high-frequency data for the S&P 500 aggregate market portfolio, we find strong evidence for richer and more complex dynamic dependencies in the jump tails than hitherto entertained in the literature.

Keywords: Extreme events, jumps, high-frequency data, jump tails, non-parametric estimation, stochastic volatility.

JEL classification: C13, C14, G10, G12.

*We would like to thank the Editor (Jim Stock) and two anonymous referees for their detailed and thoughtful comments, which helped greatly improve the paper. We would also like to thank Yacine Aït-Sahalia, Torben G. Andersen, Richard Davis, Jean Jacod, Thomas Mikosch, Mark Podolskij, Eric Renault, George Tauchen, as well as seminar participants at various conferences for many useful suggestions. The research was partly funded by NSF grant SES-0957330 to the NBER. Bollerslev also acknowledges support from CREATE funded by the Danish National Research Foundation.

†Department of Economics, Duke University, Durham, NC 27708; NBER and CREATE; e-mail: boller@duke.edu.

‡Department of Finance, Kellogg School of Management, Northwestern University, Evanston, IL 60208; e-mail: v-todorov@northwestern.edu.
1 Introduction

The recent financial crises has spurred a renewed interest in the estimation of tail events. We add to the currently available tools for assessing tail behavior in financial markets by developing a new and flexible non-parametric framework for the estimation of the jump tails of Itô semimartingales. These processes, which are ubiquitous in continuous-time economic modeling and modern asset pricing finance in particular, portray the dynamic evolution in the form of a drift term and a combination of continuous and dis-continuous martingale increments driven by separate stochastic volatility and jump compensators, respectively. While both of the martingale components can account for non-Gaussian behavior, the tails associated with the jumps manifest themselves very differently from a formal statistical perspective. Exploiting these differences, we develop a new robust methodology for estimating the jump tails. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its intensity, that only utilize the weak assumption of regular variation in the jump tails, along with in-fill asymptotic arguments for directly estimating the “large” jumps from the data. The procedure assumes that the “large” sized jumps are identically distributed, but otherwise allows for very general dynamic dependencies in jump occurrences, and importantly puts no restrictions on the behavior of the “small” jumps. Nor does it restrict the dynamic dependencies in the continuous part of the process and the form of the stochastic volatility.

The existing empirical evidence pertaining to the behavior of jump tails in asset prices comes almost exclusively from tightly parameterized jump-diffusion models. In particular, following Merton (1976), most empirical studies to date have relied on relatively simple and tractable finite activity jump processes, with normally distributed jump sizes coupled with a constant jump intensity, or a jump intensity process that is affine in the diffusive stochastic variance. Although such a formulation is very convenient from an analytical perspective, anticipating our empirical findings, the data clearly suggests the existence of more complex dependencies and typically larger jump tails that are formally outside this framework.

To illustrate this point, and the inability of the standard modeling framework to adequately describe the data, Figure 1 shows the unconditional empirical jump tails estimated directly from a sample of one-minute high-frequency futures data for the S&P 500 aggregate market portfolio.

1 The two types of risks are also very different from an economic perspective. Stochastic volatility in effect induces temporal variation in the investment opportunity set and a corresponding hedging component; see, e.g., Merton (1973). This additional risk may be spanned by an asset with payoff dependent on the stochastic volatility, e.g., an option. By contrast, the presence of jumps require a different derivative instrument for each possible jump size to completely span the corresponding risk. Along these lines, the seemingly high prices for close-to-expiration out-of-the-money puts observed in many options markets may also be seen as indirect evidence that investors demand a separate risk premium for jump tail events; see, e.g., Broadie et al. (2009).
Figure 1: Empirical and Normal Jump Tails

Note: The dotted lines in the two separate panels report the left and right empirical jump tail intensities based on one-minute S&P 500 futures prices from 1990 to 2008. The dashed lines give the corresponding best fit by a Merton type model with normally distributed jump sizes. The results are reported on a double logarithmic scale.

spanning the period from January 1990 to December 2008. In addition to the raw empirical jump intensities, we also include in the figure the jump tails implied by a model with normally distributed jump sizes estimated with the same high-frequency prices. As the figure clearly shows, this now standard approach to jump modeling tends to overestimate the “medium-sized” jumps, while severely underestimating the likelihood of “large” jumps.

This points to a more fundamental problem with a fully parametric estimation of the jump tails. Parametric models generally link the behavior of the “small” and “large” jumps in a highly model-specific fashion. Statistically, however, the “small” and “large” jumps are fundamentally different, and the requisite techniques for studying the relevant aspects of the jump compensator, or the Lévy measure, reflect those differences. The behavior of the Lévy measure around 0 primarily captures the pathwise properties of the jump process; e.g., finite or infinite activity, finite or infinite variation. These features can only be reliably estimated using high-frequency data and corresponding in-fill asymptotic arguments. On the other hand, the properties of the jump tails and the behavior of the Lévy measure at infinity cannot be reliably estimated from

\footnote{This same data also underlies our empirical illustration in Section 6, and we provide a more detailed description of the data there.}

\footnote{The parameter estimates are based on a simple method-of-moments type procedure. When the jump intensity is constant this estimation strategy corresponds directly to maximum likelihood, and it may be formalized more generally along the lines of the theoretical analysis in Todorov (2009).}
a single realization over a fixed short time-interval, but instead must be inferred using standard asymptotic arguments and the notion of an increasing sample over longer calendar time spans. Our estimation of the jump tails purposely avoids any link between “small” and “large” jumps by utilizing fill-in asymptotic arguments to directly isolate the “large” jumps, while at the same time relying on standard asymptotic arguments for reliably estimating the population characteristics.

By focusing directly on the jumps, our procedure works both for the case where the jump intensity is constant, i.e., pure Lévy type jumps, but importantly also in the practically more relevant case with time-varying jump tail intensities. Intuitively, while the jumps may cluster in time, the relative importance of differently sized jumps remains the same, leaving the ratios of the tail jump intensities constant across jump sizes. By contrast, if one were to base the inference on the price increments over fixed time-intervals, any clustering of the jumps would invariably impact the size of the tails and would have to be somehow accounted for in the estimation.\(^4\)

The basic ideas behind the new estimation approach developed in the paper may be summarized in terms of the following steps: (i) estimate the local volatility of the continuous part of the process based on fill-in asymptotic arguments; (ii) using this estimate for the diffusive volatility define a dynamically varying threshold to directly estimate the “large” jumps from the actually observed discrete-time high-frequency price increments; (iii) apply essentially model-free extreme value theory type approximations for the jump intensities to infer empirically relevant extremal features, and the behavior of the jump tails in particular; (iv) based on conventional long-span asymptotic arguments define a simple-to-implement method of moments type estimator involving the observed and theoretically implied jump tail intensities to learn more generally about the dynamic tail dependencies and extreme quantiles of the empirical distribution. Steps (i) and (ii) have direct precedents in the recent literature on non-parametric jump robust volatility estimation from high-frequency data, introduced by Mancini (2001) and Barndorff-Nielsen and Shephard (2004, 2006).\(^5\) Steps (iii) and (iv), however, and the corresponding non-parametric approximations, are to the best of our knowledge, new.\(^6\)

The importance of using high-frequency data for effectively estimating the “large” jumps, and the power-law decay for the intensities, is clearly illustrated by Figure 2, which compares the empirical jump tails for the S&P 500 market portfolio estimated with one- and ten-minutes returns, respectively. While the estimates coincide for the larger jump sizes, as they should, another advantage of working directly with the jumps is that our estimator does not depend upon the form of the stochastic volatility, and in particular is robust to the presence of jumps in the volatility, as explored parametrically by Barndorff-Nielsen and Shephard (2001) and more recently using non-parametric procedures by, e.g., Jacod and Todorov (2010) and Todorov and Tauchen (2010).\(^5\) Shimizu (2006) and Shimizu and Yoshida (2006) have also previously relied on similar methods in the parametric estimation of jump-diffusion models.

They imply, among other things, that the jump tail intensities should obey a power-law for sufficiently large jump sizes. Formally, this result builds on the so-called peaks-over-threshold method together with the assumption of regular variation in the tails, as originally developed by Smith (1987) in the context of \(i.i.d.\) random variables.

\(^4\) Another advantage of working directly with the jumps is that our estimator does not depend upon the form of the stochastic volatility, and in particular is robust to the presence of jumps in the volatility, as explored parametrically by Barndorff-Nielsen and Shephard (2001) and more recently using non-parametric procedures by, e.g., Jacod and Todorov (2010) and Todorov and Tauchen (2010).

\(^5\) Shimizu (2006) and Shimizu and Yoshida (2006) have also previously relied on similar methods in the parametric estimation of jump-diffusion models.

\(^6\) They imply, among other things, that the jump tail intensities should obey a power-law for sufficiently large jump sizes. Formally, this result builds on the so-called peaks-over-threshold method together with the assumption of regular variation in the tails, as originally developed by Smith (1987) in the context of \(i.i.d.\) random variables.
Figure 2: Empirical Jump Tails and Sampling Frequency

![Figure 2](image_url)

Note: The two separate panels report the left and right empirical jump tail intensities based on one-minute (dotted line) and ten-minutes (dashed line) S&P 500 futures prices from 1990 to 2008. The results are reported on a double logarithmic scale.

our ability to meaningfully extract the more moderate-sized jumps obviously becomes more limited at the ten-minute frequency. Intuitively, the coarser the sampling frequency, the more the continuous variation will obscure the jumps, and the greater cutoff values will need to be used in the jump-tail inference, in turn resulting in a loss of jump-observations and efficiency of the estimation.7

Figures 1 and 2 both corroborate the empirical validity of the assumed power-law decay underlying our asymptotic approximations. Importantly, however, our estimates of the jump tails go beyond the simple case of jumps with independent increments, i.e., Lévy type jumps, by explicitly incorporating dynamic dependencies in the jump tail intensities. Specifically, utilizing the assumption of regular variation in the tails, we show how appropriately rescaled and transformed versions of the tails of the jump compensators should be approximately equal to the cumulative distribution function of a Generalized Pareto distribution, even for dynamically dependent jump tails. Going one step further, we show how this in turn implies that appropriately transformed - by the scores from a Generalized Pareto distribution - “large” jumps when integrated over time become approximate martingales, thus setting the stage for the construction of a moment type estimator for the jump tail parameters through the judicious choice of instruments.8

7Of course, the use of coarser daily frequency returns, as commonly done in the estimation of parametric jump-diffusion models, would even further exaggerate these same effects and handicap the detection of jumps.

8Even though our procedure is distinctly non-parametric in nature, it has the appealing feature that it corresponds directly to parametric maximum likelihood when the tail decay obeys an exact power-law.
In practice, of course, our use of discretely sampled high-frequency data for inferring the “large” jumps invariably introduces a discretization error, the size of which is directly related to the mesh of the observation grid. In the last step of our theoretical analysis we provide formal conditions under which this error has no first-order asymptotic effect on the estimation. We further investigate the accuracy of these asymptotic based approximations through a series of Monte Carlo simulations, confirming the applicability of the feasible version of the new jump tail estimation procedure.

On actually implementing the estimators with the same high-frequency S&P 500 data underlying the average jump tail intensities depicted in the figures discussed above, we find strong evidence for temporal variation in the jump intensities and much richer and more complex dynamic dependencies in the resulting jump tails than hitherto entertained in the literature. As such, our new econometric modeling framework developed in the paper has the potential of allowing for jump tail forecasting, and in turn can be used to provide a deeper economic understanding of the tail events of the types observed during the recent financial crises.

The rest of the paper is organized as follows. Section 2 introduces the basic notation and key assumptions. Section 3 describes the main idea behind the new estimation method and the relevant asymptotic results when continuous price records are available. Section 4 extends the analysis to the practically relevant situation of discretely sampled prices. The practical applicability of the new estimator is confirmed through a series of Monte Carlo simulations presented in Section 5. Section 6 discusses the empirical estimation results for the S&P 500 market index, and our findings related to the rich dynamic dependencies inherent in the jump tails of that portfolio. Section 7 concludes. All proofs are deferred to Section 8.

2 Setup and Assumptions

To set up the notation, let \(p_t := \ln(P_t) \) denote the logarithmic price of a financial asset. We will assume that the log-price follows an Itô semimartingale defined on some filtered probability space, i.e.,

\[
dp_t = \alpha_t dt + \sigma_t dW_t + \int_{\mathbb{R}} \kappa(x)\tilde{\mu}(dt, dx) + \int_{\mathbb{R}} \kappa'(x)\mu(dt, dx),
\]

where \(\alpha_t \) and \(\sigma_t \) are both locally bounded processes; \(W_t \) denotes a Brownian motion; \(\mu \) is a one-dimensional measure on \([0, \infty) \times \mathbb{R}\) that counts the number of jumps of given size \(x \) over a given time-interval; the compensator of the jump measure is denoted by \(\nu_t(x) dx dt \), where \(\tilde{\mu}(dt, dx) := \mu(dt, dx) - \nu_t(x) dx dt \) refers to the corresponding compensated measure; \(\kappa(x) \) is a continuous function with bounded support equal to \(x \) around the origin, with \(\kappa'(x) = x - \kappa(x) \). We will

9The two separate integrals on the right-hand-side of equation (2.1) reflect the different statistical properties of “small” and “large” jumps. In general, “small” jumps may be of infinite variation and the corresponding
also assume throughout that $\nu_t(dx)$ is absolutely continuous with respect to Lebesgue measure, i.e., $\nu_t(dx) = \nu_t(x)dx$. The main contribution of the paper is to provide a new, essentially model-free, robust framework for the estimation of the tail behavior of $\nu_t(x)$, leaving other aspects of the data generating process in equation (2.1), including the drift term α_t and the stochastic volatility σ_t, as well as the activity level of the jumps, unspecified and free to instantly vary. We do assume, however, that conditionally on past information the “large” sized jumps are identically distributed.

Finance theory, under mild regularity conditions, implies that all asset prices should be semimartingales. Formally, the only additional assumption imposed by the representation in equation (2.1) is that the characteristics of the semimartingale, i.e., the drift term, the quadratic variation of the diffusion, and the compensator for the jump measure, are all absolutely continuous in time processes. This assumption is satisfied by virtually all of the processes hitherto used in the asset pricing literature. It does, however, rule out certain processes where the Brownian motion is time-changed by a separate discontinuous process.\(^\text{10}\)

As noted in the introduction, the existing evidence concerning the empirical features of $\nu_t(x)$ for large values of the jump sizes x come almost exclusively from tightly parameterized jump-diffusion models. In particular, following Merton (1976), most empirical studies to date have relied on relatively simple and tractable compound Poisson jump processes with normally distributed jump sizes. Under this specification the Lévy measure in equation (2.1) may be expressed as $\nu_t(x) = \lambda_t e^{-(x-\mu)^2/(2\sigma^2)}(2\pi\sigma^2)^{-1/2}$, where λ_t denotes some predictable stochastic process intended to capture the time-varying probability of jump arrivals, typically postulated to be a linear function of the stochastic volatility σ_t^2. While such a formulation is very convenient from an analytical perspective, Figure 1 above clearly shows that such a specification doesn’t necessarily fit the tails very well.

As also noted in the introduction, another problem with fully parametric approaches to estimating the jump tails, is that they generally link the behavior of the “small” and the “large” jumps in a highly model-specific fashion. Statistically, however, the “small” and the “large” jumps are very different. The behavior of the Lévy measure around 0, and the corresponding first integral on the right-hand-side of equation (2.1), captures mainly the pathwise properties of the jump process; e.g., finite or infinite activity, finite or infinite variation. By contrast, the last term in equation (2.1) and the jump tails only depend on the “large” jumps. Indeed, our basic integration is defined in a stochastic sense with respect to the martingale measure $\tilde{\mu}$. This directly mirrors the integral that naturally arise for the diffusive increments with respect to the Brownian motion, which is similarly an infinite variation process. By contrast, there is only a finite number of “large” jumps over a given finite time-interval, and the second integration is consequently defined in the usual Riemann–Stieltjes sense.

\(^\text{10}\)In practice, a host of market microstructure frictions also prevent us from directly observing the efficient price. As discussed in more detail below, our empirical strategy for dealing with this is to rely an appropriately chosen discrete sampling frequency, so that the effect of the measurement error in the actually observed price process vis-a-vis the one defined by equation (2.1) is negligible.
minimal assumptions related to $\nu_t(x)$, as stated in A1 and A2 immediately below, only concern the behavior of the “large” jumps, and put no restrictions on the jump activity per se.

Assumption A1. The jump compensator $\nu_t(x)$ satisfies,

$$\nu_t(x) = (\varphi_t^+ 1_{\{x>0\}} + \varphi_t^- 1_{\{x<0\}})\nu(x),$$ \hspace{1cm} (2.2)

where φ_t^\pm are nonegative-valued stochastic processes with càdlàg paths, and $\nu(x)$ is a positive measure on \mathbb{R} with $\int_{\mathbb{R}}(|x|^2 \wedge 1)\nu(x)dx < \infty$.

Assumption A1 factors the dependence in the jump compensator on time (t) and jump size (x) into two separate functions. This implies that differently sized jumps will have the same dynamic properties. Intuitively, in the case of finite activity jumps, the assumption implies that we allow for a different time change for the positive and negative jumps, but otherwise leave the distribution the same. Most parametric jump specifications used to date, e.g., time-changed Lévy processes, trivially satisfy this assumption. Still, the assumption is slightly stronger than what we actually need, and it would be possible to relax A1 to hold only for sufficiently large values of $|x|$. However, to avoid the unnecessary additional complications that arise in this situation, we will maintain A1 in its current form.

Our interest center on the tail behavior of the Lévy density $\nu(x)$, which in turn determines the tail behavior of the jumps in the price process. Our next assumption concerns the variation in the tails of $\nu(x)$, and is directly motivated by the apparent power tail decay seen in Figure 1 discussed in the Introduction. To facilitate our analysis and the notation, define the functions $\psi(x) := e^{\mid x \mid} - 1$, and

$$\psi^+(x) := \begin{cases} \psi(x) & x > 0, \\ 0 & x \leq 0 \end{cases} \quad \psi^-(x) := \begin{cases} 0 & x > 0, \\ \psi(x) & x \leq 0. \end{cases}$$

These functions allow us to switch from jumps in the log-price to jumps in levels. Also, denote $\nu^+_\psi(y) = \frac{\nu(\ln(y+1))}{y+1}$ and $\nu^-_\psi(y) = \frac{\nu(-\ln(y+1))}{y+1}$ for $y \in (0, \infty)$. Then for every measurable set A in $(0, \infty)$, $\int_{(0,\infty)} 1_{\{x \in A\}}\nu^+_\psi(x)dx = \int_{\mathbb{R}^+} 1_{\{e^{x-1} \in A\}}\nu^-(x)dx$ and $\int_{(0,\infty)} 1_{\{x \in A\}}\nu^-_\psi(x)dx = \int_{\mathbb{R}^-} 1_{\{e^{-x-1} \in A\}}\nu^+(x)dx$. Moreover, denote the tails of the measures by $\nu^+_\psi(x) := \int_x^{\infty} \nu^+_\psi(u)du$, for some $x > 0$. The function $\psi(x)$ maps the positive and negative jumps to $(0, \infty)$, with the Lévy densities for the transformed jumps given by the ν^\pm_ψ measures. Assumption A2 imposes regular variation for the tails of the latter.

Assumption A2.

(a) $\nu^\pm_\psi(x)$ are regularly varying at infinity functions, i.e., $\nu^\pm_\psi(x) = x^{-\alpha^\pm}L^\pm(x)$, where $\alpha^\pm > 0$, and $L^\pm(x)$ are slowly varying at infinity.11

11A function $L(x)$ is said to be slowly varying at infinity if $\lim_{x \to \infty} \frac{L(tx)}{L(x)} = 1$ for every $t > 0$.

7
(b) $L^\pm(x)$ satisfy the condition $L^\pm(tx)/L^\pm(x) = 1 + O(\tau^\pm(t))$ as $x \uparrow \infty$ for $t > 0$, where $	au^\pm(x) > 0$, $	au^\pm(x) \to 0$ as $x \uparrow \infty$, and $	au^\pm(x)$ are nonincreasing.

Assumption A2 is key to our analysis and several comments are in order. First, the close to linear behavior of the empirical jump tail estimates for the “large” jumps depicted in Figure 1 is directly in line with A2(a). Second, A2(a) rules out Lévy measures with light tails, i.e., Merton-type jumps, whose tails belong in the maximum domain of attraction of the Gumbel distribution; see e.g., Embrechts et al. (2001).12 Third, the decay of the tail measures $\nu^\pm(x)$ is directly linked to the fat-tailedness of the transformed jumps $\psi(\Delta p_i)$. In particular, the integrability of $\int_{t^{1+a}}^t \int_{\mathbb{R}} |\psi(x)| \rho \mu(ds,dx)$ depends on whether $p \gtrless \alpha^\pm$. A2(a) therefore implies that all powers of the jumps in the logarithmic price exist. Alternatively, one could assume that A2(a) holds for $\nu^\pm(x)$ instead of $\nu^\pm(\psi(x))$, where $\nu^+(x) = \int_x^\infty \nu(u)du$ and $\nu^-(x) = \int_{-x}^{-\infty} \nu(u)du$ for $x > 0$. Or equivalently, that the continuously-compounded returns $\ln \left(\frac{p_t}{p_{t-1}} \right)$, instead of the “discrete” returns $\frac{p_t - p_{t-1}}{p_{t-1}}$, should be modeled with Lévy densities with power decay in their tails. We think the former is less appealing from an economic perspective.13

The second part A2(b) of the assumption is taken directly from Smith (1987); see also Goldie and Smith (1987). It essentially limits the deviation of the tail measures $\nu^\pm(x)$ from the power law. We will use this assumption in determining the rate of convergence and establishing asymptotic normality of the estimates for the jump-tail probabilities.

Our next assumption imposes minimal stationarity and integrability conditions on φ^\pm_t. This assumption is needed to ensure that the standard long-span asymptotics works in conjunction with the other assumptions for consistently inferring the jump tails.

Assumption A3. φ^\pm_t are stationary processes satisfying $0 < \mathbb{E} |\varphi^\pm_t|^{1+\epsilon} < K$, for some $K > 0$ and $\epsilon > 0$.

Our final assumption restricts φ^\pm_t to be an Itô semimartingale. It also imposes some weak additional integrability conditions on the stochastic processes that appear in the definition of the price process in equation (2.1). We need this assumption in the empirically realistic situation when the price is only observed at discrete points in time.

Assumption A4.

12Although the new estimation method could be adopted to cover this case as well, parts of the proof would require slightly different techniques. Since this case arguably isn’t empirically relevant, we will not consider it here.

13Assuming a heavy-tailed distribution for the continuously-compounded returns would imply an infinite conditional variance for the price level, which in turn can result in infinite option prices, and as conjectured by Merton (1976) might also result in infinite equilibrium interest rates. In practice, of course, it is impossible to differentiate whether assumption A2(a) holds for $\nu^\pm(\psi(x))$ or $\nu^\pm(x)$, as the difference between $\ln \left(\frac{p_t}{p_{t-1}} \right)$ and $\frac{p_t - p_{t-1}}{p_{t-1}}$ is numerically very small for the jump sizes that we actually observe.
(a) φ_t^\pm are Itô semimartingales satisfying,

$$
\varphi_t^\pm = \varphi_0^\pm + \int_0^t \alpha_u^\pm du + \int_0^t \sigma_u^\pm dW_u + \int_0^t \sigma_u^\pm dB_u + \int_0^t \int_{\mathbb{R}^2} \kappa(\delta^\pm(u-, x))\mu'(du, dx) \\
+ \int_0^t \int_{\mathbb{R}^2} \kappa'(\delta^\pm(u-, x))\mu'(du, dx),
$$

(2.3)

where B_t is a Brownian motion orthogonal to W_t, the processes α_t^\pm, σ_t^\pm and σ_t^\pm'', and the functions δ^\pm in their first argument, all have càdlàg paths, and μ' is a Poisson measure on \mathbb{R}^2 with independent marginals, the first of which counts the price jumps, with compensator $\nu_t(x_1)dx_1 \otimes \nu'(x_2)dx_2$, for $\nu'(-)$ a valid Lévy density.

(b) For every $p > 0$ and every $t > 0$,

$$
\mathbb{E} \left| \int_0^t (|\alpha_s| + \sigma_s^2 + |\alpha_s^\pm| + (\sigma_s^\pm)^2) + (\sigma_s^\pm'')^2) ds + \int_0^t \int_{\mathbb{R}^2} (\delta^\pm(s-, x))^2 \mu'(ds, dx) \right|^p < K_p, \quad (2.4)
$$

where $K_p > 0$.

Assumption A4(a) is very weak. It is easily satisfied for virtually all parametric jump specifications used in the literature to date, including the most commonly applied affine jump-diffusions. The assumption also allows for so-called self-exciting jump processes in which φ_t^\pm depend directly on the jump measure μ, as in, e.g., Todorov (2010).

This completes our discussion of the basic setup and assumptions underlying the new jump tail estimation procedures. We begin in the next section with a discussion of the infeasible case in which continuously recorded prices are available for the estimation. This obviously facilitates the estimation, as it allows us to perfectly separate the continuous from the discontinuous price moves. We subsequently extend the analysis in Section 4 to the empirically realistic case when prices are only observed at discrete points in time.

3 Estimation of Jump Tails: Continuous Price Records

The basic idea behind our estimation scheme builds on the three assumptions in A1-A3 and the relevant extreme value theory type approximations for appropriately transformed versions of the jump tails. The common approach for assessing tail behavior in extreme value theory relies on discretely sampled prices, or returns, and a corresponding estimate of the tail index; see, e.g., Embrechts et al. (2001) and the references therein. Importantly, however, we are after the tail behavior of the jump measure μ itself, as opposed to that of the discrete returns.14
In general, there is not a direct link between the tails of the discrete returns and the Lévy measure of the price process. For one, time-varying volatility in the continuous part of the price process, as determined by σ_t, invariably impacts the tails of the discrete returns. Secondly, temporal dependencies in the jump intensity itself, i.e., the dependence of $\nu_t(x)$ on t, also affects the tails. While, it would be possible to circumvent the first problem in the continuous-record case by looking only at the jump increments, any time-variation in the jump intensity would still blur the link between the tails of the latter and the tails of $\nu(x)$ in the decomposition in A1.

Instead, we base our inference directly on the jumps, or in the case of discretely observed prices estimates thereof, and a set of moment conditions for the jump intensity $\nu_t(x)$ derived from assumptions A1 and A2. Using the fact that the random jump measure μ differs from its compensator by a martingale, we translate the moment conditions for $\nu_t(x)$ to a set of moment conditions for μ that involve the estimated in-sample jumps. To conserve space, we focus our discussion on the estimation of the right tail only; the estimation of the left tail proceeds completely analogous.

We begin by approximating the distribution of $1 - \frac{\nu_t(u + x)}{\nu_t(x)}$ for $y \geq x > 0$, using A1 and A2. We then rely on the scores from this approximating distribution to define a set of feasible estimating equations based on the observed “large” jumps. This idea originates in the so-called peaks-over-thresholds method for estimating the tails, and the tail decay, of i.i.d. random variables, originally developed by Smith (1987). Specifically, it follows from assumption A2 that

$$\frac{\nu_t(u + x)}{\nu_t(x)} = \left(1 + \frac{u}{x}\right)^{-\alpha^+} + \left(1 + \frac{u}{x}\right)^{-\alpha^+} \left(\frac{L^+(x + u)}{L^+(x)} - 1\right),$$

where $u > 0$, and $x > 0$. Since $L^+(\cdot)$ is a slowly varying at infinity function, the second term becomes negligible for large x. Thus,

$$1 - \frac{\nu_t(u + x)}{\nu_t(x)} \approx G(u; \sigma^+, \xi^+) = 1 - \left(1 + \xi^+ u/\sigma^+\right)^{-1/\xi^+}, \quad \xi^+ \neq 0, \sigma^+ > 0,$$

where $G(u; \sigma^+, \xi^+) = \frac{1}{\xi^+}$, and the tail decay parameter α^+ is determined by A2(a). Let the scores associated with the log-likelihood function of the generalized Pareto distribution be denoted by,

$$\phi_1^+(u, \sigma^+, \xi^+) = \frac{1}{\xi^+} - \left(1 + \frac{1}{\xi^+}\right) \left(1 + \frac{\xi^+ u}{\sigma^+}\right)^{-1},$$

$$\phi_2^+(u, \sigma^+, \xi^+) = \frac{1}{\xi^+ \sigma^+} \log \left(1 + \frac{\xi^+ u}{\sigma^+}\right) - \frac{1}{\xi^+} \left(1 + \frac{1}{\xi^+}\right) + \frac{1}{\xi^+} \left(1 + \frac{1}{\xi^+}\right) \left(1 + \frac{\xi^+ u}{\sigma^+}\right)^{-1},$$

where $i = 1,2$ refer to the derivatives with respect to σ^+ and ξ^+, respectively.

As shown by Leadbetter and Rootzen (1988), the extremes of two sequences of discrete returns with the same marginal law, one with and the other without any temporal dependencies, is generally different.
The idea is then to pick a “large” threshold \(g_T \), and fit the scores to the jumps above this threshold. Doing so results in the following set of moment conditions involving the realized “large” jumps,

\[
g_T(\theta, g_T) = \frac{1}{M_T^+} \sum_{t=1}^{T-1} \left(\int_t^{t+1} \int_\mathbb{R} \phi_1^+(\psi(x) - g_T, \theta(1), \theta(2)) 1_{\{\psi(x) > g_T\}} \mu(ds, dx) \right), \tag{3.4}
\]

where \(\theta \) denotes the 2 \times 1 vector of unknown parameters, and \(M_T^+ \) equals the number of positive in-sample jumps which, upon transformation by \(\psi(\cdot) \), exceed the threshold \(g_T \), that is,\(^{16}\)

\[
M_T^+ = \sum_{t=1}^{T-1} \int_t^{t+1} \int_\mathbb{R} 1_{\{\psi(x) > g_T\}} \mu(ds, dx). \tag{3.5}
\]

In theory, of course, \(g_T \) will have to grow to infinity with the sample size \(T \). Denote the true parameter values implicitly defined by the moment conditions \(\theta_T^* = (\sigma_T^+, \xi_T^+)' \), where \(\sigma_T^+ = \frac{g_T}{\alpha_T} \) increases with the sample size \(T \). We then have the following theorem.\(^{17}\)

Theorem 1 For the process \(p_t \) defined in (2.1), assume that A1-A3 hold. Let the sequence of truncation levels satisfy

\[
g_T \to \infty, \quad T \varpi_T^+(g_T) \to \infty, \quad \text{and} \quad \sqrt{T \varpi_T^+(g_T)} \tau^+(g_T) \to 0, \quad \text{as} \quad T \to \infty, \tag{3.6}
\]

where \(\tau^+(\cdot) \) is defined in A2(b). Then, for \(T \to \infty \), with probability approaching one \(g_T(\theta, g_T) = 0 \) has a solution \(\hat{\theta}_T := (\hat{\sigma}_T^+, \hat{\xi}_T^+)' \), which satisfies

\[
\sqrt{M_T^+} \left(\frac{\hat{\sigma}_T^+ / \sigma_T^+ - 1}{\hat{\xi}_T^+ - \xi_T^+} \right) \xi_T^+ \Sigma^{-1/2} Z \leq \frac{1}{(\alpha^+ + 1)(\alpha^+ + 2)} \left(\frac{\alpha^+(\alpha^+ + 1)}{(\alpha^+)^2} \frac{(\alpha^+)^2}{2(\alpha^+)^2} \right), \tag{3.7}
\]

where \(Z \) denotes a standard bivariate normal distribution.

The scaling factor for the difference between the estimated and true parameters that control the tails is given by the random number \(M_T^+ \). Of course, \(M_T^+ / (T \varpi_T^+(g_T)) \xrightarrow{P} \mathbb{E}(\varpi_T^+) \), and \(T \varpi_T^+(g_T) \) is non-random. However, since \(\varpi_T^+(g_T) \) converges to 0, the rate of convergence is in general slower than the standard \(\sqrt{T} \) rate. In particular, it follows from the conditions for the truncation level in (3.6), that the larger the deviations of the tail from the power-law decay, i.e., the slower the rate at which \(\tau^+(x) \) goes to zero as \(x \uparrow \infty \), the slower the rate of convergence of the estimator.

\(^{16}\)\(M_T^+ \) provides an estimate for \(T \varpi_T^+(g_T) \mathbb{E}(\varpi_T^+) \).

\(^{17}\)Alternatively, we could have used the score based on the approximation \(\frac{\varpi_T^+(u+x)}{\varpi_T^+(x)} \approx (1 + \frac{u}{x})^{-1/\xi_T^+} \), \(\xi_T^+ \neq 0 \), obtained by substituting the true value of \(\sigma^+ = \frac{g_T}{\alpha_T} \) in equation (3.2). This would involve only a single parameter, and it could be seen as an analogue of Hill (1975)’s estimator in the jump tail setting. However, such an estimator would not be scale free, and the analysis in Smith (1987) also suggests that it would be less robust than the estimator advocated in Theorem 1.
Intuitively, the further are the tails from the eventual power-law decay, the larger the required truncation level, which in turn slows down the rate of convergence as fewer observations are employed in the estimation.

To further appreciate this result, suppose that $\tau^+(x) = |x|^{-k}$ for some $k > 0$. In this situation, the required rate condition in (3.6) stipulates that $\varrho_T = O\left(T^{\alpha+1+2k}\right)$, so that for $k \to \infty$, i.e., $L^+(x)$ in A2 converging to unity and diminishing deviations from the power-law, it is possible to get arbitrarily close to the standard parametric \sqrt{T} rate of convergence for optimally chosen ϱ_T.

In practice, of course, we do not know a-priori the form of the slowly-varying function $L^+(x)$ that dictates the optimal choice of the truncation level, and we are faced with a tradeoff in terms of robustness versus efficiency in the estimation. A low value of ϱ_T would entail the use of more observations, i.e., more jumps, and hence a more efficient estimator. On the other hand, by choosing ϱ_T too small, we run the risk of larger deviations from the eventual power-law tail decay and non-robustness of the estimation. We will explore these tradeoffs more fully in the Monte Carlo simulations reported in Section 5 below.

Importantly, the estimating equations in (3.4) correctly identify the tail behavior of $\nu(x)$, even in the presence of time-varying jump intensities. Intuitively, temporal dependence in the jump intensity does not affect the distribution of the “large” jumps, and as such the presence of more jumps in certain periods does not systematically bias the estimator. By contrast, any estimator based on the jump increments over fixed intervals of time, e.g., days, would invariably be affected by jump clustering and a failure to properly account for that effect would result in biased tail index estimates.

Even though Theorem 1 allows for jump clustering, it doesn’t fully exploit the dynamic structure of the jump tails implied by assumptions A1-A2. Going one step further, it follows from the proofs in the Appendix that for $t, s \geq 0$,

$\mathbb{E}_t\left(\int_t^{t+s} \int_{\mathbb{R}} \phi^+_i(\psi(x) - \varrho_T, \theta^{(1)}, \theta^{(2)}) \mu(ds, dx)\right)$

$= \mathbb{E}_t\left(\int_t^{t+s} \int_{\mathbb{R}} \phi^+_i(\psi(x) - \varrho_T, \theta^{(1)}, \theta^{(2)}) \bar{\mu}(ds, dx)\right) + \int_{\mathbb{R}} \phi^+_i(\psi(x) - \varrho_T, \theta^{(1)}, \theta^{(2)}) \nu(x)dx \mathbb{E}_t\left(\int_t^{t+1} \varphi^+_u du\right)$

$= \int_{\mathbb{R}} \phi^+_i(\psi(x) - \varrho_T, \theta^{(1)}, \theta^{(2)}) \nu(x)dx \mathbb{E}_t\left(\int_t^{t+s} \varphi^+_u du\right) \approx 0,$

where we have used the shorthand notation $\mathbb{E}_t(\cdot) = \mathbb{E}(\cdot|\mathcal{F}_t)$. In particular, for any instrument x_t adapted to \mathcal{F}_t,

$\mathbb{E}\left(x_t \int_t^{t+1} \int_{\mathbb{R}} \phi^+_i(\psi(x) - \varrho_T, \theta^{(1)}, \theta^{(2)}) \mu(ds, dx)\right) \approx 0.$

This in turn suggests the following extension of Theorem 1.

18Recall that the counting jump measure μ is not a martingale, but that its compensation version, $\tilde{\mu}(ds, dx) = \mu(ds, dx) - \nu_t(x)dxdt$, is.
Theorem 2 For the process p_t defined in (2.1), assume that $A1$-$A3$ hold. Let the sequence of truncation levels satisfy the growth condition (3.6) of Theorem 1. Define the vector of moment conditions

$$g_T(\theta, \eta_T) = \frac{1}{MT} \sum_{t=1}^{T-1} x_t \otimes \left(\int_t^{t+1} \int_{\mathbb{R}} \phi_1^+ (\psi(x) - \eta_T, \theta(1), \theta(2)) 1_{\psi(x) > \eta_T} \mu(ds, dx) \right),$$

(3.8)

where x_t is a $q \times 1$ \mathcal{F}_t-adapted stationary vector process that satisfy $\mathbb{E}[|x_t|]^{2+\epsilon} < \infty$ for some $\epsilon > 0$, such that a law of large numbers holds for $\frac{1}{T} \sum_{t=1}^{T-1} x_t \int_t^{t+1} \varphi_s^+ ds$ and $\frac{1}{T} \sum_{t=1}^{T-1} x_t x_t' \int_t^{t+1} \varphi_s^+ ds$ with $\mathbb{E} \left(x_t \int_t^{t+1} \varphi_s^+ ds \right) \neq 0$ as $T \to \infty$. Further, let \hat{W}_T denote a sequence of symmetric positive semi-definite $2q \times 2q$ matrices, such that $\hat{W}_T \overset{p}{\to} W$, where W is a $2q \times 2q$ positive definite matrix. Denote $\hat{\theta}_T = \arg\min_{\theta \in \mathcal{E}_t} g_T(\theta, \eta_T) \hat{W}_T g_T(\theta, \eta_T)$, where $\Theta_T = \left\{ \theta : \alpha_i \theta^{(i)} \leq \theta^{(i)} \leq \alpha_h \theta^{(i)}, i = 1, 2 \right\}$ for some constants $0 < \alpha_i < 1 < \alpha_h$. Then, for $T \to \infty$, $\hat{\theta}_T$ exists with probability approaching one, and

$$\sqrt{M_T} \left(\frac{\hat{\sigma}_T^+/\sigma_T^+ - 1}{\hat{\xi}^+ - \xi^+} \right) \overset{d}{\to} \sqrt{\mathbb{E}(\varphi^+)} \Xi^{1/2} Z, \quad \Xi = (\Pi' \Pi)^{-1} (\Pi' \Pi \Sigma \Pi') (\Pi' \Pi)^{-1},$$

(3.9)

where Z is a standard bivariate normal distribution,

$$\Pi = \mathbb{E} \left(x_t \int_t^{t+1} \varphi_s^+ ds \right) \otimes \Sigma, \quad V = \mathbb{E} \left(x_t x_t' \int_t^{t+1} \varphi_s^+ ds \right) \otimes \Sigma,$$

(3.10)

and Σ is defined in (3.7).

The use of additional instruments in the estimation of the tail parameters afforded by Theorem 2 provides a general and convenient framework for testing the dynamic structure of the jumps. In the semiparametric example discussed in the next subsection we will provide a practically attractive choice for the instrument vector process x_t. A consistent estimate of the variance-covariance matrix for the resulting parameter estimates is readily obtained by replacing each of the relevant matrices in the expression for Ξ in equation (3.9) with

$$\hat{\Pi}_T = \sum_{t=1}^{T-1} x_t \int_t^{t+1} \mu(ds, dx) \otimes \hat{\Sigma}_T, \quad \hat{V}_T = \sum_{t=1}^{T-1} x_t x_t' \int_t^{t+1} \mu(ds, dx) \otimes \hat{\Sigma}_T,$$

and $\hat{\Sigma}_T$ defined from Σ in equation (3.7) with α^+ estimated by $1/\hat{\xi}^+$.

Thus far our focus has centered on recovering the tail properties of $\nu(x)$. In most practical applications, however, one would be interested in the tails of $\nu_t(x)$. Building on the decomposition for $\nu_t(x)$ in assumption A1 into its time-varying components φ_t^\pm, it follows that for the "large" jumps, the difference

$$\int_0^t \int_{\mathbb{R}} \phi(s-, x) \mu(ds, dx) - \int_0^t \int_{\mathbb{R}} \phi(s-, x) \varphi_t^+ ds \nu(x) dx,$$
must be a martingale for any function \(\phi(s, x) \) with càdlàg paths, and \(\phi(s, x) = 0 \) for \(x < K \), where \(K > 0 \) denotes some constant. In parallel to the discussion above, this therefore allows for the construction of a set of unconditional estimating equations through the appropriate choice of instrument(s) \(x_t \). In general, of course, the resulting moments will depend on the exact specification of the \(\varphi^+_t \) processes. To illustrate, we next consider the special case in which the time-varying part of the right jump intensity is assumed to be an affine function of the spot variance, i.e., \(\varphi^+_t = k_0^+ + k_1^+ \sigma_t^2 \). This same basic assumption also underlies our empirical illustration in Section 6 below.

3.1 Affine Jump Intensities

The assumption that the temporal dependencies in the jump intensities are affine in the spot volatility nests virtually all parametric jump-diffusion models hitherto considered in the literature, including the affine jump-diffusion class of models popularized by Duffie et al. (2000). Importantly, however, by making no parametric assumptions about the volatility process itself, the semi-parametric setup adopted here is much more flexible, allowing for the possibility of so-called self-exciting jumps and models in which \(\sigma_t \) depends on the jump measure \(\mu \).

The maintained assumption of continuous price records underlying all of the results in this section and our ability to perfectly identify the “large” jumps, similarly allows us to perfectly infer the integrated variation \(\int_{t-1}^t \sigma_s^2 ds \). In practice, as discussed further below, with discretely observed prices, estimates of the integrated variation will invariably involve some estimation error. Nonetheless, this naturally suggests using that measure to help identify the dependence of \(\varphi^+_t \) on \(\sigma_t^2 \). The following corollary extends the results above to cover this situation.

Corollary 1 For the process \(p_t \) defined in (2.1), assume that A1-A3 hold, and that \(\varphi^+_t = k_0^+ + k_1^+ \sigma_t^2 \). Denote \(\theta = (\sigma^+, \xi^+, k_0^+, \nu^+(\theta_T), k_1^+ \nu^+(\theta_T)) \), and define the vector of moment conditions,

\[
g_T(\theta, \theta_T) = \frac{1}{M_T} \sum_{t=1}^{T-1} x_t \otimes \left(\begin{array}{c} \int_t^{t+1} \int_{\mathbb{R}} \phi^+_x (\psi(x) - \varrho_T, \theta^{(1)}, \theta^{(2)}) \mathbb{1}_{\{\psi(x) > \varrho_T\}} \mu(dx, dx) \\
\int_t^{t+1} \int_{\mathbb{R}} \phi^+_x (\psi(x) - \varrho_T, \theta^{(1)}, \theta^{(2)}) \mathbb{1}_{\{\psi(x) > \varrho_T\}} \mu(dx, dx) - \theta^{(3)} - \theta^{(4)} \int_t^{t+1} \sigma_s^2 ds \\
\int_t^{t+1} \int_{\psi(x) > \varrho_T} \mu(dx, dx) - \theta^{(3)} - \theta^{(4)} \int_t^{t+1} \sigma_s^2 ds \\
\int_t^{t+1} \int_{\psi(x) > \varrho_T} \mu(dx, dx) - \theta^{(3)} - \theta^{(4)} \int_t^{t+1} \sigma_s^2 ds \end{array} \right), \quad (3.11)
\]

with \(x_t = \left(1 - \int_{t-1}^t \sigma_s^2 ds\right)^T \). Assume that the growth condition for \(\varrho_T \) in (3.6) is satisfied and that a law of large numbers holds for \(\frac{1}{T} \sum_{t=1}^{T-1} \int_t^{t+1} \sigma_s^2 ds \int_t^{t+1} \sigma_s^2 ds \) and \(\frac{1}{T} \sum_{t=1}^{T-1} \left(\int_t^{t+1} \sigma_s^2 ds \right)^2 \int_t^{t+1} \sigma_s^2 ds \), as \(T \to \infty \), with \(\mathbb{E}|\sigma_t|^{6+\epsilon} < \infty \) for some \(\epsilon > 0 \). Finally, let \(\widehat{W}_T \) denote a sequence of symmetric positive semi-definite \(6 \times 6 \) matrices, such that \(\widehat{W}_T \xrightarrow{p} W \), where \(W \) is a \(6 \times 6 \) positive definite matrix, and denote \(\widehat{\theta}_T = \arg\min_{\theta \in \Theta} g_T(\theta, \theta_T)^\prime \widehat{W}_T g_T(\theta, \theta_T) \).
(a) Then for $T \to \infty$, the estimator $\hat{\theta}_T$ exists with probability approaching one, and

$$
\sqrt{M_T^-} \begin{pmatrix}
\frac{\hat{\sigma}_T^-}{\sigma_T^-} - 1 \\
\hat{\xi}^+ - \xi^+
\end{pmatrix} \xrightarrow{L} \sqrt{\mathbb{E}(\varphi_T^+)} \tilde{\Xi}^{1/2} Z,
$$

where Z is a standard multivariate normal, $\tilde{\Xi} = (\hat{\Pi}'W\hat{\Pi})^{-1} \left(\hat{\Pi}'W\tilde{\Xi}W\hat{\Pi} \right) (\hat{\Pi}'W\hat{\Pi})^{-1}$ with

$$
\hat{\Pi} = \begin{pmatrix}
\Pi \\
0_{2\times2}
\end{pmatrix}
\frac{1}{\mathbb{E}\sigma^2_i} \mathbb{E} \left(f_{i-1} f_{i+1} \sigma_i^2 ds \right),
$$

$$
\tilde{\Sigma} = \begin{pmatrix}
0_{2\times2}
\mathbb{E} (x_i x_i' f_i^t \sigma_i^2) \\
\mathbb{E} (x_i x_i' f_i^t \sigma_i^2)
\end{pmatrix},
$$

and Π and Σ defined in (3.10).

(b) Further, let $z_T = \eta \vartheta_T$ for some constant $\eta \geq 1$, and denote

$$
k_i^+ \nu_i^+ (z_T) = k_i^+ \nu_i^+ (\vartheta_T) \left(1 + \frac{\hat{\xi}^+}{\sigma_T^+} (z_T - \vartheta_T) \right)^{-1/\hat{\xi}^+}, \quad i = 0, 1.
$$

Then, for $T \to \infty$,

$$
\sqrt{M_T^-} \begin{pmatrix}
k_0^+ \nu_0^+ (z_T)/\nu_0^+ (\vartheta_T) - k_0^+ \\
k_1^+ \nu_1^+ (z_T)/\nu_1^+ (\vartheta_T) - k_1^+
\end{pmatrix} \xrightarrow{L} \left(\Phi \tilde{\Xi} \Phi' \right)^{1/2} Z,
$$

where

$$
\Phi = \begin{pmatrix}
k_0^+ (\alpha^+) \eta^{-\alpha^+} (\eta - 1) & k_0^+ (\alpha^+) \eta^{-\alpha^+} (\log(\eta) - 1 + 1/\eta) & \eta^{-\alpha^+} & 0 \\
k_1^+ \alpha^+ \eta^{-\alpha^+} (\eta - 1) & k_1^+ \alpha^+ \eta^{-\alpha^+} (\log(\eta) - 1 + 1/\eta) & 0 & \eta^{-\alpha^+}
\end{pmatrix},
$$

and Z refers to the standard normal vector from part (a).

The last two moment conditions effectively serve to disentangle the constant and time-varying parts, i.e., $k_0^+ \nu_0^+ (\vartheta_T)$ and $k_1^+ \nu_1^+ (\vartheta_T)$, respectively. They may be interpreted as linear projections of the counts of “large” jumps on a constant and the integrated variation over the previous period. As such, these two moment conditions only require that the affine structure holds for the “large” jumps. Part (b) of the corollary shows how the estimation framework may be extended to meaningfully characterize the behavior of the jump-tails at levels for which we (invariably) have few in-sample observations. These, of course, are also the levels of interest in many risk management situations involving extreme value-at-risk type quantities. We further illustrate this important new dimension of our result in the empirical application discussion in Section 6 below.

Our formal analysis up until now has been based on the assumption of continuously recorded prices. We next discuss how this empirically unrealistic assumption may be relaxed and the results extended to the case when prices are only observed at discrete points in time.
4 Estimation of Jump Tails: Discretely Sampled Prices

The results in the previous section relied on our ability to directly identify the jumps in a continuously observed realization of the underlying process. The theoretical notion of continuous price records is, of course, practically infeasible. Instead, we will now assume that over each unit time-interval \([t, t + 1]\), the price process \(p_t\) is “only” observed at the discrete points in time \(t, t + \Delta_n, \ldots, t + n\Delta_n\), for some \(\Delta_n > 0\). We will refer to \(n = \lfloor 1/\Delta_n \rfloor\) as the number of high-frequency price observation over the “day.” To facilitate the exposition, we will use the shorthand notation \(\Delta_n^{\uparrow} p := p_{t+i\Delta_n} - p_{t+(i-1)\Delta_n}\) to refer to the corresponding price increments.

In order to adapt the same basic estimation strategies to the case of high-frequency data, we will assume that the length of the sampling interval goes to zero, i.e., \(\Delta_n \to 0\). This will allow us at least in some limiting sense to estimate the “large” jumps, and in turn for the construction of feasible estimates of the same integrals with respect to the jump measures and corresponding moment conditions analyzed above, say \(\hat{g}_T(\theta, \varrho_T)\). These high-frequency based estimates will, of course, contain discretization errors, but we will show that under appropriate conditions, the errors shrink to zero and do not affect the estimates.

In particular, our estimates for the integrals \(\int_t^{t+1} \int_{\psi(x) > \varrho_T} \phi_i^+(\psi(x) - \varrho_T, \theta^{(1)}, \theta^{(2)}) \mu(ds, dx)\), \(i = 1, 2\), may simply be expressed as,

\[
\sum_{j=1}^{n} \phi_i^+(\psi(\Delta_j^{\uparrow} p) - \varrho_T, \theta^{(1)}, \theta^{(2)}) 1(\psi(\Delta_j^{\uparrow} p) > \varrho_T) \quad i = 1, 2.
\]

These expressions rely on the fact that for the estimation of the tails we only need to evaluate the score functions \(\phi_i^+\) for values of \(|x|\) outside a neighborhood of zero. More formally, using the modulus of continuity of càdlàg functions, all, but the high-frequency intervals containing the “large” jumps, can be made arbitrary small uniformly over a given fixed time-interval, and those increments therefore won’t matter in the estimation of the integrals with respect to the jump measure. This argument, of course, is only pathwise, and in our analysis the time span \(T\) will also increase as \(\Delta_n\) goes to zero. This requires somewhat different arguments in the formal proof, but the intuition remains the same.

Altogether this implies that the feasible estimation with discretely sampled high-frequency prices will be subject to three distinct types of errors, namely: (i) the sampling error associated with the empirical processes employed in the moment vector, controlled by the span of the data

\[\text{The assumption of equally spaced observations is not critical, but the assumption that the largest mesh size goes to zero, or } \Delta_n \to 0 \text{ in the case of equidistant observations, is.}\]

\[\text{In actually implementing the estimating equations below, we further normalize the truncation level by an estimate of the local continuous variation.}\]

\[\text{An additional complication arises from the fact that our integrands with respect to } \mu \text{ are discontinuous at the point } x \text{ for which } \psi^+(x) = \varrho_T, \text{ and this point of discontinuity changes with the time span. At the point of discontinuity, however, } \nu_t(x) \text{ is absolutely continuous, at least asymptotically for increasing values of } |x|.}\]
T; (ii) approximation error for the jump tail, controlled by the truncation size ϱ_T; and (iii) discretization error from “filtering” the jumps from the high-frequency data, controlled by the length of the high-frequency interval Δ_n, or equivalently the number of high-frequency observations per unit time-interval n. The following theorem provides rate conditions for the relative speeds with which T, ϱ_T and n increase that are sufficient to ensure that the feasible estimation remains asymptotically equivalent to the infeasible procedures discussed in the previous section.

Theorem 3 For the process p_t defined in (2.1) sampled at times $0, \Delta_n, ..., n\Delta_n, ..., t, t+\Delta_n, ..., t+n\Delta_n, ...$, assume that A1-A4 hold, and that $\nu(x)$ is nondecreasing for x sufficiently large. If in the moment vector $g_T(\theta, \varrho_T)$ defined in (3.8), $\int_t^{t+1} \int_{\psi^+(x) > \varrho_T} \phi^+_i(\psi(x) - \varrho_T, \theta(1), \theta(2))\mu(ds, dx)$ is replaced by $\sum_{j=1}^{n} \phi^+_i(\psi(\Delta_j n^d p) - \varrho_T, \theta(1), \theta(2))1(\psi^+(\Delta_j n^d p) > \varrho_T)$ for $i = 1, 2$ and $t = 0, ..., T - 1$, then the conclusions of of Theorem 2 continue to hold, provided the growth conditions for ϱ_T in (3.6) are satisfied, and

$$\sqrt{T} \psi^+(\varrho_T) \Delta_n^{1-\epsilon} \left(1 + \sqrt{\frac{\Delta_n}{\nu^+(\varrho_T)}}\right) \to 0, \quad \text{as } T \uparrow \infty \text{ and } \Delta_n \downarrow 0,$$

where $\epsilon > 0$ is arbitrary small.

The conditions in Theorem 3 guarantees that the feasible estimator has the same asymptotic normal distribution as the infeasible estimator defined in Theorem 2. Meanwhile, consistency of the feasible estimator only requires the much weaker rate condition $\Delta_n^{1-\epsilon} / \nu^+(\varrho_T) \to 0$. In the “parametric limiting case,” where ϱ_T does not change with T, this condition is trivially satisfied for $\Delta_n \downarrow 0$. Hence, in this situation, we only need $T \uparrow \infty$ and $\Delta_n \downarrow 0$ to ensure consistency of the tail estimation.

The more general results in Theorem 3 effectively balances off two types of discretization errors. The first arises from the diffusive component and the presence of “small” jumps, both of which add “noise” to the estimating equations. The second type of discretization error stems from misclassifying “large” jumps. On the one hand, the possibility of having several “medium” sized jumps within a single high-frequency time interval, each of which are below the truncation level but when aggregated over the interval exceeds it, could falsely result in the identification of a “large” jump. On the other hand, a “large” jump above the truncation level might get “canceled” by the presence of one or more “medium” sized jumps of the opposite sign within the same high-frequency interval. The effect of the first of these two types of discretization errors is naturally controlled by the choice of the truncation level. For simplicity, consider a setting in which we have either “small” jumps below Δ_n^α, for some $\alpha > 0$, or “large” jumps above the truncation level ϱ_T. The relatively weak rate condition $T \psi^+(\varrho_T) \Delta_n^{1-\epsilon} \to 0$ then suffices to control the first

Note, this implicitly assumes that the underlying jump process changes with T and Δ_n. This is akin to the arguments used in the local-to-unity analysis of unit-roots in the time series literature.
discretization error. This therefore suggests that for a sufficiently large truncation ϱ_T, this error is likely to have only minor effects, as confirmed by our Monte Carlo simulation study discussed below. By contrast, the second type of discretization error cannot simply be eliminated by the choice of a high truncation level. Intuitively, this also means that our approach is likely to work less well for jump processes which can have more than one nontrivially sized jump within a single high-frequency time-interval.\footnote{Further along these lines, let λ denote the average intensity of “medium” to “large” sized jumps. Then, the probability of having two or more such jumps within a single high-frequency time-interval is bounded by $\lambda^2 \Delta_n^2$, so that the relative rate condition associated with this discretization error is more appropriately expressed as $\lambda^2 \frac{\sqrt{T} \Delta_n^{1+\epsilon}}{\varpi(\varrho_T)} \rightarrow 0$.}

To help further understand the rate condition in (4.1) behind the asymptotic equivalence result, it is instructive to consider the situation in which $\tau^+(x) = |x|^{-k}$ for some $k > 0$. In that case Theorem 2 dictates the optimal truncation level to be $\varrho_T = \Delta_1^{1+\epsilon} \frac{1}{\alpha^{2k} + 2k} \Delta_n^{1+\epsilon} \rightarrow 0$. Recall that $k \rightarrow \infty$ implies ever diminishing deviations from the power-decay law for the jump tails, in turn allowing for the use of lower truncation levels. That is, $k \rightarrow \infty$ may be interpreted as the “parametric limit case” of our estimation, with the corresponding rate condition implied by the theorem equal to $T \Delta_1^{1+\epsilon} \rightarrow 0$. That condition is also essentially equivalent to the well-known condition for the estimation of diffusion processes with discretely sampled data; see e.g., Prakasa Rao (1988). Conversely, when the tail decay doesn’t perfectly adhere to a power law, i.e., for finite k, we need to resort to higher truncation levels and larger sized jumps, in turn affecting the rate condition in (4.1).

The result in Theorem 3 is general and pertains to any discretely sampled Itô semimartingale process. We next discuss how to make the estimation for the special case of affine jump intensities, previously analyzed in Section 3.1 for the continuous record case, practically feasible.

4.1 Affine Jump Intensities

Given the feasible estimates for the integrals with respect to the jump measures discussed above, the primary obstacle in implementing the estimator in Corollary 1 stems from the need to quantify the integrated variation $\int_t^{t+1} \sigma_s^2 ds$. We will base our estimates for this quantity on the so-called Truncated Variation (TV) measure originally proposed by Mancini (2001),\footnote{Further along these lines, let λ denote the average intensity of “medium” to “large” sized jumps. Then, the probability of having two or more such jumps within a single high-frequency time-interval is bounded by $\lambda^2 \Delta_n^2$, so that the relative rate condition associated with this discretization error is more appropriately expressed as $\lambda^2 \frac{\sqrt{T} \Delta_n^{1+\epsilon}}{\varpi(\varrho_T)} \rightarrow 0$.}

\begin{equation}
TV_t^n = \sum_{j=1}^{n} (\Delta_j^{n,t} \rho)^2 \mathbf{1}_{|\Delta_j^{n,t} \rho| \leq \alpha \Delta_t}, \quad \alpha > 0, \varpi \in \left(0, \frac{1}{2}\right).
\end{equation}

\footnote{For additional results along these lines, see also Jacod (2008) and Mancini (2009). The key idea of using truncation and high-frequency data to separate the jumps from the diffusion component has also previously been used by Shimizu and Yoshida (2006) and Shimizu (2010) in the construction of contrast functions for the estimation of certain Markov jump-diffusion processes.}

\footnote{Alternatively, we could have used the bipower variation estimator developed by Barndorff-Nielsen and Shephard (2004, 2006).}
As the formula shows, the truncated variation is simply constructed by summing the “continuous” squared price increments obtained by purging the price process of jumps, i.e., all of the price increments above the threshold \(\alpha \Delta_n \). Asymptotically, of course, \(\Delta_n \to 0 \) so that the threshold \(\Delta_n \downarrow 0 \).

In order to formally state our feasible analogue to Corollary 1 based on the TV estimator we need some minor additional regularity type conditions related to the “vibrancy” of the jumps. These are stated in terms of the generalized version of the Blumenthal-Getoor index recently proposed by Aït-Sahalia and Jacod (2009),

\[
\beta := \inf \left\{ p : \int_{0}^{T} \int_{\mathbb{R}} (|x|^p \wedge 1) \mu(ds, dx) < \infty \right\} \in [0, 2].
\] (4.3)

The index depends directly on the sample path of the jump process over \([0, T]\), with more “vibrant” trajectories resulting in higher values close to 2, as would be implied by a Brownian motion. Importantly, however, the actual value of \(\beta \) is determined solely by the “small” jumps. Moreover, it follows that under assumption A1 \(\beta \equiv \inf \left\{ p : \int_{\mathbb{R}} (|x|^p \wedge 1) \nu(x) dx < \infty \right\} \), so that the index is deterministic.

Corollary 2 For the process \(p_t \) defined in (2.1) sampled at times 0, \(\Delta_n, ..., n\Delta_n, ..., t, t+\Delta_n, ..., t+n\Delta_n, ... \), assume that A1-A4 hold, with \(\nu(x) \) nondecreasing for \(x \) sufficiently large. If in the moment vector \(g_T(\theta, \varrho_T) \) defined in (3.11), \(\int_{\psi_i}^{t+1} \int_{\psi_i(x) > \varrho_T} \phi_i(x) - \varrho_T, \theta^{(1)}, \theta^{(2)} \mu(ds, dx) \) is replaced by \(\sum_{j=1}^{n} \phi_i^+(\psi(\Delta_j^{n,p}) - \varrho_T, \theta^{(1)}, \theta^{(2)}) \) for \(i = 1, 2 \) and \(t = 0, ..., T - 1 \), and \(\int_{t-1}^{t} \sigma_s^2 ds \) is replaced by \(TV_i^n \) defined in (4.2) for \(t = 1, ..., T \), then the conclusions of Corollary 1 continue to hold true, provided condition (3.6) of Theorem 1 and condition (4.1) of Theorem 3 are satisfied, and in addition

\[
\sqrt{T \psi_i^+(\varrho_T) \Delta_n^{-(\beta - 1)}} \to 0, \quad \text{as } T \uparrow \infty \text{ and } \Delta_n \downarrow 0,
\] (4.4)

where \(\epsilon > 0 \) denotes an arbitrary small constant.

In contrast to the general rate condition given by equation (4.1) in Theorem 3, the condition in (4.4) does depend on the behavior of the “small” jumps, as manifest by the presence of the Blumenthal-Getoor index \(\beta \). This additional requirement arises from the need to control the size of the discretization error in estimating the integrated variation. Intuitively, the more active the jumps, the more difficult it is to separate the continuous and the jump components of the price process, and in turn the more difficult it is to estimate the integrated variation.

\(^{26} \)To be consistent, in our numerical implementations of the integrated jump measures, we similarly truncated the price increments from below by \(\alpha \Delta_n \). As previously noted, we also normalize by an estimate of the local continuous variation. This obviously doesn’t change anything asymptotically, as all of the estimators are based on the “large” jumps, and \(\Delta_n \downarrow 0 \).
In the numerical implementations reported on below, we systematically fix the tuning parameter ϖ to be very close to its upper bound of $\frac{1}{2}$. Hence, for values of the Blumenthal-Getoor index less than 1, i.e., jumps of finite variation, the condition in (4.4) will automatically be satisfied by (4.1).

The feasible results in Theorem 3 and Corollary 2 are, of course, still based on asymptotic approximations. To gauge the accuracy of these approximations and the practical applicability of the new jump tail estimation procedures, we next present the results from a series of Monte Carlo simulations.

5 Monte Carlo Simulations

The Monte Carlo simulation is designed to mimic the actual data analyzed in the next section. To facilitate interpretation of the results, all of the model parameters are calibrated so that the unit time interval corresponds to a “day.”

Guided by the empirical findings reported in the extensive stochastic volatility literature, we will assume that the continuous spot volatility process is determined by a two-factor affine diffusion model, i.e., $\sigma_t^2 = V_{1,t} + V_{2,t}$, where

\begin{align*}
 dV_{1,t} &= 0.0128(0.4068 - V_{1,t})dt + 0.0954\sqrt{V_{1,t}}dB_{1,t}, \\
 dV_{2,t} &= 0.6930(0.4068 - V_{2,t})dt + 0.7023\sqrt{V_{2,t}}dB_{2,t},
\end{align*}

and $B_{1,t}$ and $B_{2,t}$ denote independent Brownian motions; see, e.g., Chernov et al. (2003) and the many references therein. The specific parameter values in equation (5.1) imply that the first volatility factor is highly persistent with a half-life of “two-and-a-half months,” while the second factor is quickly mean-reverting with a half-life of just one “day.” The unconditional means are identical and the contributions of the two volatility factors to the overall unconditional variation of the process are the same.

The Lévy measure $\nu_t(x)$ for the jumps in the log-price process satisfies assumption A1 with $\varphi_t^\pm = k_0^\pm + k_1^\pm \sigma_t^2$, and Lévy density,

\begin{equation}
\nu(x) = \left\{ c_0 \frac{e^{\beta_0 |x|}}{(e^{\beta_0 |x|} - 1)^{\beta_0+1}} + c_1 \frac{e^{\beta_1 |x|}}{(e^{\beta_1 |x|} - 1)^{\beta_1+1}} \right\} 1_{\{|x| \geq 0.4\}}.
\end{equation}

This density represents a mixture of two measures with tail decay parameters β_0 and β_1, respectively. In all of the simulations $\beta_0 < \beta_1$, so that the tail decay of the simulated price jumps is always determined by β_0.

We experimented with several different jump parameter configurations, the details of which are given in Table 1. The values of β_0 were chosen to cover the range of values for the tail decay for financial returns typically reported in the literature; see e.g., Embrechts et al. (2001) and the
Table 1: Jump Parameters

<table>
<thead>
<tr>
<th>Case</th>
<th>β_0</th>
<th>c_0</th>
<th>β_1</th>
<th>c_1</th>
<th>$k_0^+ = k_0^-$</th>
<th>$k_1^+ = k_1^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2.0</td>
<td>0.0077</td>
<td>6.0</td>
<td>1.4746 $\times 10^{-4}$</td>
<td>0.5</td>
<td>0.6146</td>
</tr>
<tr>
<td>T2</td>
<td>3.0</td>
<td>0.0046</td>
<td>9.0</td>
<td>1.4156 $\times 10^{-5}$</td>
<td>0.5</td>
<td>0.6146</td>
</tr>
<tr>
<td>T3</td>
<td>4.0</td>
<td>0.0025</td>
<td>12.0</td>
<td>1.2080 $\times 10^{-6}$</td>
<td>0.5</td>
<td>0.6146</td>
</tr>
</tbody>
</table>

Note: The table reports the values of the jump parameters used in the Monte Carlo simulations. All of the values are reported in units of daily continuously-compounded percentage returns.

references therein. The value for β_1 is set to be three times that of β_0. It essentially controls the behavior of the residual functions L^\pm in A2(b). The two scale parameters c_0 and c_1 were chosen to satisfy the following two criteria. First, we restrict the “daily” $\mathbb{P}(|x| > 0.4) = 0.06$, where the jump size x is measured in percentages. This value approximately matches our estimate for the actual financial data reported in the next section. Second, we fix the proportion of $\mathbb{P}(x > 0.4)$ due to the second measure in (5.2) to be 20%. The values of k_0^\pm and k_1^\pm were chosen to ensure that the time-varying and the time-homogenous part of the jump measures are equally important, i.e., $k_0^\pm = k_1^\pm E(\sigma_t^2)$.

Lastly, the sampling frequency $n = 400$ and time span of the data $T = 5,000$, corresponding to roughly 20 years of one-minute intraday prices over a 6.5 hours trading day, were both chosen to match the data used in the actual empirical estimation.

Our estimates of the truncated variation in (4.2) were based on $\varpi = 0.49$ and α equal to $4 \times \sqrt{BV_t \wedge RV_t}$, where BV_t denotes the bipower variation of Barndorff-Nielsen and Shephard (2004, 2006) and RV_t refers to the realized variation, both calculated over that particular “day.”

To gauge the sensitivity of the estimation results to the choice of truncation level, we report the results for three different values of ϖ_T, corresponding to jump tails equal to 0.025, 0.015, and 0.010, respectively. In parallel to the theoretical analysis, we focus on the right tail only.

To facilitate interpretation of the results, we consider three distinct aspects of the new estimation procedure, namely its ability to accurately assess the tail decay, differentiate between the constant and time-varying parts of the tails, and the extreme tail behavior. For each of the relevant statistics, we report in Table 2 the median values and the corresponding interquartile range (IQR) obtained across a total of 1,000 simulations.

The true tail decay for all of the three models is determined by the value of β_0. Our non-

27 Altogether the parameters imply that the contribution of jumps to the total quadratic variation of the price is around 5 – 15%. This is directly in line with the recent non-parametric empirical evidence reported in Barndorff-Nielsen and Shephard (2004, 2006), Huang and Tauchen (2005), and Andersen et al. (2007), among others.

28 Theoretically any fixed value of α will work. However, we follow the recent literature on jump estimation, e.g., Jacod and Todorov (2010), and adaptively set α as a multiple of an estimate of the current “daily” volatility; see also Shimizu (2010) for results on data-driven threshold selection in the estimation of Lévy jump measures from discretely observed data.
Table 2: Monte Carlo Simulation Results

<table>
<thead>
<tr>
<th>Case</th>
<th>True Value</th>
<th>Truncation Level $\nu^+_\psi(\vartheta_T) = 0.025$</th>
<th>Truncation Level $\nu^+_\psi(\vartheta_T) = 0.015$</th>
<th>Truncation Level $\nu^+_\psi(\vartheta_T) = 0.010$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>IQR</td>
<td>Median</td>
</tr>
<tr>
<td>Tail Index $1/\hat{\xi}^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Jump Intensity $k^+0 \nu^+\psi(\vartheta_T) / \nu^+_\psi(\vartheta_T)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.5</td>
<td>0.516</td>
<td>[0.310 0.713]</td>
<td>0.479</td>
</tr>
<tr>
<td>T2</td>
<td>0.5</td>
<td>0.540</td>
<td>[0.343 0.728]</td>
<td>0.511</td>
</tr>
<tr>
<td>T3</td>
<td>0.5</td>
<td>0.516</td>
<td>[0.332 0.710]</td>
<td>0.510</td>
</tr>
<tr>
<td>Time-Varying Jump Intensity $k^+1 \nu^+\psi(\vartheta_T) / \nu^+_\psi(\vartheta_T)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.6146</td>
<td>0.575</td>
<td>[0.339 0.807]</td>
<td>0.681</td>
</tr>
<tr>
<td>T2</td>
<td>0.6146</td>
<td>0.504</td>
<td>[0.282 0.746]</td>
<td>0.683</td>
</tr>
<tr>
<td>T3</td>
<td>0.6146</td>
<td>0.502</td>
<td>[0.272 0.746]</td>
<td>0.713</td>
</tr>
<tr>
<td>Tail Precision $\nu^+\psi(2.0) / \nu^+\psi(2.0)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>1.0</td>
<td>0.938</td>
<td>[0.682 1.203]</td>
<td>0.962</td>
</tr>
<tr>
<td>T2</td>
<td>1.0</td>
<td>0.709</td>
<td>[0.363 1.190]</td>
<td>0.904</td>
</tr>
<tr>
<td>T3</td>
<td>1.0</td>
<td>0.403</td>
<td>[0.070 0.996]</td>
<td>0.753</td>
</tr>
</tbody>
</table>

Note: The table reports the median tail estimates and corresponding interquartile range (IQR) across a total of 1,000 replications for each of the three models defined in Table 1 obtained by using the estimating equations defined in Section 4.

A parametric estimate for the tail decay is given by the inverse of $\hat{\xi}^+$. The results reported in the first panel of the table show that the new estimation procedure generally permits fairly accurate estimation of the tail decay. The choice of truncation level does matter, however. On the one hand, choosing a low truncation level, results in the use of more observations, and hence everything else equal, reduces the sampling error. On the other hand, choosing too low a truncation level increases the deviation from the eventual power-law decay and the error associated with the presence of the slowly varying function $L^+(x)$ in assumption A2. Too low a truncation level also renders the impact of the discretization error, and the ability to separate jumps from continuous moves, relatively more important.

Turning to the next two panels, we report the estimates for $k^+_0 \nu^+_\psi(\vartheta_T)$ and $k^+_1 \nu^+_\psi(\vartheta_T)$, respectively, relative to the true value $\nu^+_\psi(\vartheta_T)$. These ratios in effect summarize the estimation
procedure’s ability to disentangle the time-varying from the time-homogenous parts of the jump tails. The results indicate the same tradeoff in terms of the choice of truncation level: the use of lower truncation levels reduces sampling error, but at the same time increases the impact of the discretization error. Comparing the resulting slight biases observed across the three sets of results generally point to the middle truncation level of 0.015 as the preferred choice.

A distinct advantage of the new estimation procedure is that it allows us to meaningfully extrapolate the behavior of the jump tails to “extreme” levels for which inference based on historical sample averages is bound to be unreliable. To illustrate this important point, the third panel in the table reports the estimates for the jump tail intensities for jump sizes in excess of 2%, a very “large” value with typical daily financial returns. To allow for a direct comparison across the different models, we report the estimates relative to their true values; i.e., $\hat{\nu} + \psi(2.0)/\nu + \psi(2.0)$. Further, corroborating the accuracy of the underlying approximations, most of the estimated ratios are indeed quite close to unity. Of course, the same bias-variance type tradeoff as before pertains to the choice of truncation level, again pointing to the middle value as the most reliable.

All-in-all, the simulation results clearly indicate that the new estimation procedure works well, and that it gives rise to reasonably accurate estimates of the jump tail features of interest in practical applications. To further illustrate the applicability, we turn next to an empirical application involving actual high-frequency data for the S&P 500 aggregate market portfolio.

6 S&P 500 Jump Tails

Our estimates for the aggregate market jump tails are based on high-frequency intraday data for the S&P 500 futures contract spanning the period from January 1, 1990 to December 31, 2008. The theory underlying the new estimator builds on the idea of increasingly finer sampled observations over fixed time intervals, or $\Delta_n \to 0$. In practice, of course, market microstructure frictions prevent us from sampling too finely, while at the same time maintaining the basic Itô semimartingale assumption in equation (2.1); see, e.g., the discussion in Andersen et al. (2001), Zhang et al. (2005), and Barndorff-Nielsen et al. (2008). In lieu of this tradeoff, we choose to sample the prices at a one-minute frequency, resulting in a total of 400 observations per day for each of the 4,750 trading days in the sample.\(^{29}\)

Turning to the results, Table 3 reports the parameter estimates based on the assumption of affine in σ_t^2 time-varying jump intensities, without otherwise restricting the volatility dynamics, following the practical implementation strategy in Corollary 2.\(^{30}\) The validity of the underlying

\(^{29}\)For simplicity, we have ignored the overnight returns in all of the calculations reported on below. The resulting one-minute returns are approximately serially uncorrelated, with first and second order autocorrelation coefficients equal to -0.0016 and 0.0015, respectively. We also experimented with the use of coarser five- and ten-minutes sampling, resulting in very similar, albeit somewhat less precise, estimates for the tail decay parameters to the ones for the one-minute returns discussed below; see also Figure 2 in the Introduction.

\(^{30}\)Guided by the simulation results in the previous section, we set the truncation level at $\nu(\sigma_T) = 0.03$, or
Table 3: S&P Jump Tail Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>St.error</th>
<th>Parameter</th>
<th>Estimate</th>
<th>St.error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left Tail</td>
<td></td>
<td>Right Tail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ^-</td>
<td>0.2664</td>
<td>0.1153</td>
<td>ξ^+</td>
<td>0.2059</td>
<td>0.1301</td>
</tr>
<tr>
<td>σ_T^-</td>
<td>0.2566</td>
<td>0.0536</td>
<td>σ_T^+</td>
<td>0.2435</td>
<td>0.0487</td>
</tr>
<tr>
<td>$k_0^- \varphi_\theta(\theta_T)$</td>
<td>-0.0004</td>
<td>0.0057</td>
<td>$k_0^+ \varphi_\theta(\theta_T)$</td>
<td>0.0023</td>
<td>0.0052</td>
</tr>
<tr>
<td>$k_1^- \varphi_\theta(\theta_T)$</td>
<td>0.0161</td>
<td>0.0065</td>
<td>$k_1^+ \varphi_\theta(\theta_T)$</td>
<td>0.0129</td>
<td>0.0057</td>
</tr>
<tr>
<td>J-test</td>
<td>4.1606</td>
<td>J-test</td>
<td>1.8256</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table reports the estimates for the jump tail parameters based on one-minute S&P 500 futures prices from January 1, 1990 to December 31, 2008. The estimates solve the moment conditions in Corollary 1 and the practical implementation thereof in Corollary 2. The truncation level is set at $\varphi_T = 0.5124$, corresponding to $\varphi_\theta^\pm(\theta_T) = 0.015$ for each of the tails. The J-test involves two over-identifying restrictions.

modeling assumptions is corroborated by the J-tests for the two over-identifying moment restrictions reported in the last row of the table. Consistent with the idea of a power law decay, the estimates for ξ^\pm are both statistically different from zero. Interestingly, the pairwise estimates for the left and right tail parameters are generally fairly close, implying that the tails are approximately symmetric. Importantly, the results also point to the existence of strong dynamic tail dependencies. Indeed, it appears that the tail jump intensities are almost exclusively determined by the time-varying parts of ν_t.

In order to more clearly illustrate these dynamic dependencies, we plot in Figure 3 the actual in-sample “large” jump realizations, together with the estimated jump tail intensities, i.e., $\varphi_T^\pm(x)$. It is evident that the “large” jumps tend to cluster in time, with most of the realizations during the early 1990-91 part of the sample, the 1999-2002 time period associated with the Russian default, LTCM debacle, and the burst of the “tech bubble,” as well as the recent 2008 financial crises. These tendencies for the jumps to cluster in time is also directly manifest in the estimated jump intensities depicted in the two lower panels in the figure. Reported on a relative logarithmic scale, the estimates imply large variations in the jump intensities, with tenfold changes within a few years not at all uncommon.

Rather than focusing on the jump intensities, from a risk management perspective it is often

24
Note: The two top panels show the daily realized “large” jumps in the one-minute S&P 500 futures prices from January 1, 1990 to December 31, 2008, based on a truncation level of $\varrho_T = 0.5124$, or $\nu_\varrho(g_T) = 0.03$. The two bottom panels show the estimated logarithmic time-varying jump tail intensities $\nu_T^\pm(x)$.

Note: The figure shows the one-minute S&P 500 futures returns from January 1, 1990 to December 31, 2008, together with the estimated jump sizes corresponding to a jump intensity of one positive, respectively negative, jump every two calendar years, as formally defined by the “jump quantiles” $q_{t,a}^\pm$.

25
more informative to consider the likely size of a jump. In particular, keeping the jump intensity constant, the intrinsic time-dependence in the jump sizes may be formally revealed through,

\[q_{t,\alpha}^- = \sup \{ x < 0 : \nu_t^-(x) \leq \alpha \}, \quad \nu_t^-(x) = \int_{-\infty}^{x} \nu_t(z) dz, \]

\[q_{t,\alpha}^+ = \inf \{ x > 0 : \nu_t^+(x) \leq \alpha \}, \quad \nu_t^+(x) = \int_{x}^{\infty} \nu_t(z) dz, \]

(6.3)

which define the time-varying jump sizes corresponding to a time \(t \) jump intensity of \(\alpha > 0 \) for negative and positive jumps exceeding those values. The \(q_{t,\alpha}^\pm \) may also be interpreted as the inverse of the maps \(x \to \nu_t^\pm(x) \), and we will refer to them correspondingly as the “jump quantiles.” Such quantities would generally be very difficult to accurately estimate empirically. However, the key approximation in (3.2), together with the assumption of affine jump intensities underlying our jump tail estimation, permits us to readily evaluate the jump quantiles in a non-parametric fashion. Specifically, for the right tail we have the following approximation,

\[\hat{q}_{t,\alpha}^+ = \psi^{-1} \left\{ \frac{k_0^+ \nu_t^+(\varrho_T)}{\alpha} + \frac{k_1^+ \nu_t^+(\varrho_T) \hat{\sigma}_t^2}{\alpha} \right\} + 1 \left[\frac{\hat{\sigma}_t^2}{\xi^+} \right], \]

(6.4)

where \(\hat{\sigma}_t^2 \) denotes a consistent estimator for the spot volatility, as discussed above. The left tail estimator \(\hat{q}_{t,\alpha}^- \) may, of course, be defined analogously.\(^{32}\)

Figure 4 shows the resulting estimated jump sizes corresponding to one positive, respectively negative, jump larger, respectively smaller, than that value every two calendar year, i.e., one jump of that absolute size per calendar year. The estimates again reveal surprisingly close to symmetric tail behavior, albeit slightly larger variations in the negative jump quantiles due to the slightly larger estimated value for \(k_1^- \nu_t^-\varrho_T \). The figure also shows that the size of the “large” jumps vary quite dramatically over time, with jumps in excess of one percent highly unlikely for most of the sample, while such jumps are fairly common during the recent financial crises.

To further highlight these important dependencies, we plot in Figure 5 the estimated left jump quantiles for 2005, a relatively quiet year, together with the quantiles for 2008. In addition to the two-year quantiles shown in the previous figure, we also include the extreme jump sizes corresponding to a negative jump every twenty years, i.e., once in the sample. These latter extreme quantiles would be impossible to meaningfully estimate by extrapolating from standard parametric procedures and coarser frequency, e.g., daily data. Looking at the figure, 2005 was obviously an “easy” year from a risk management perspective. The two and twenty year jump quantiles are both approximately constant, and hover around less than negative one and two percent, respectively. In sharp contrast, the jump quantiles for 2008 vary quite dramatically throughout the year, reaching their peak in October in the aftermath of the Lehman bankruptcy and the government TARP bailout program, gradually stabilizing towards the end of the year.

\[^{32}\]To formally justify these estimators for \(q_{t,\alpha}^\pm \) we need \(\alpha_T \propto \varrho_T \).
Figure 5: Left Tail Jump Quantiles

Note: The figure shows the negative one-minute S&P 500 futures returns for 2005 (top panel) and 2008 (bottom panel), together with the estimated left tail “jump quantiles” corresponding to a jump intensity of one negative jump every two calendar years and one negative jump every twentieth calendar years, respectively, as formally defined by $q_{t,\alpha}^\pm$.

7 Conclusion

The availability of high-frequency intraday asset prices has spurred a large and rapidly growing literature. This paper further expands on our ability to extract useful information about important economic phenomena from this new rich source of data through the development of a flexible non-parametric estimation procedure for the jump tails. The method allows for very general dynamic dependencies in the tails and imposes essentially no restrictions on the continuous part of the price process. The basic idea is based on the assumption of regular variation in the jump tails, and how that assumption translates into certain functionals of the “large” jumps being approximate martingales. We confirm the reliability of the new estimation procedure through a series of Monte Carlo simulation experiments, and illustrate its applicability with actual high-frequency data for the S&P 500 market portfolio.

Looking ahead, the new estimation framework should be of use in many situations of practical import. In particular, the most important and difficult to manage financial market risks are invariably associated with tail events. Hence, the ability to more accurately measure and possibly forecast the jump tails, holds the promise of improved risk management techniques better geared toward controlling large risks, leaving aside the smaller approximately “continuous” price moves. By enhancing our understanding of the type of economic “news” that induce large price moves, or tail events, empirical implementations of the new estimation procedure could also help shed
new light on the fundamental linkages between asset markets and the real economy.

The lack of investor confidence and fear of tail events are often singled out as one of the main culprits behind the massive losses in market values in the advent of the Fall 2008 financial crises, and the idea that rare disasters may help explain apparent mis-pricing has spurred a rapidly growing recent literature. The arguments put forth in that literature often hinge on probabilities of severe events that exceed those materialized in sample, or probabilities calibrated to reflect a much broader set of assets and/or countries; e.g., Barro (2006) and Gabaix (2010). Instead, as discussed in Bollerslev and Todorov (2010), the new econometric procedures developed here hold the promise of reliably estimating the likely occurrence of tail events based on actually observed high-frequency data, without having to resort to “peso” type explanations or the use of otherwise tightly parameterized “structural” models.

8 Proofs

8.1 Proofs of Theorem 1

Follows from the proof of Theorem 2 below. □

8.2 Proof of Theorem 2

In what follows we will denote with z_t the set of jumps x in the time-interval $[t, t + 1]$ such that $\psi^+(x) > \varrho_T$ (note, this is always a finite number), together with the vector x_t. For notational convenience, denote for $\theta = (\sigma, \xi)$,

$$g(\theta, z_t, \varrho_T) = \left(\frac{\int_t^{t+1} \int_{\mathbb{R}} \phi_1^+(\psi(x) - \varrho_T, \theta^{(1)}, \theta^{(2)}) 1_{[\psi^+(x) > \varrho_T]} \mu(ds, dx)}{\int_t^{t+1} \int_{\mathbb{R}} \phi_2^+(\psi(x) - \varrho_T, \theta^{(1)}, \theta^{(2)}) 1_{[\psi^+(x) > \varrho_T]} \mu(ds, dx)} \right),$$

$$G(\theta, z_t, \varrho_T) = \left(G^{(ij)}(\theta, z_t, \varrho_T) \right)_{i=1,\ldots,2q, j=1,2}, \quad G^{(ij)}(\theta, z_t, \varrho_T) = \frac{\partial g^{(i)}}{\partial \theta^{(j)}}(\theta, z_t, \varrho_T),$$

and define $G_T(\theta, \varrho_T) = \frac{1}{M_T} \sum_{t=1}^{T-1} G(\theta, z_t, \varrho_T)$. Further, set

$$H_i(\theta, z_t, \varrho_T) = \left(H_i^{(kl)}(\theta, z_t, \varrho_T) \right)_{k,l=1,2}, \quad H_i^{(kl)}(\theta, z_t, \varrho_T) = \frac{\partial g^{(i)}}{\partial \theta^{(k)}}(\theta, z_t, \varrho_T).$$

We begin by showing some preliminary results, which we will make use of later in the proof. First, by a change of variable it follows that for any function $\phi(u)$,

$$\int_{\mathbb{R}} \phi(\psi^+(x) - \varrho_T) 1_{[\psi^+(x) > \varrho_T]} \nu(x)dx = \int_0^{\infty} \phi(u) \nu^+_\psi(\varrho_T + u)du$$

(8.1)

$$= \nu^+_\psi(\varrho_T) \int_0^{\infty} \phi(u) \left(1 - \frac{\nu^+_\psi(u + \varrho_T)}{\nu^+_\psi(\varrho_T)} \right) du.$$
Next, using assumption A2 for the slowly varying function $L^+(x)$, integration by parts, and the results of Goldie and Smith (1987) for slowly varying functions with residuals (see also Smith (1987), Proposition 3.1), we have for some \(\beta > 0 \) and \(r > 0 \),

\[
\int_0^\infty \left(1 + \frac{\beta u}{\varrho_T} \right)^{-r} \left(1 - \frac{\psi^+(u + \varrho_T)}{\psi^+(\varrho_T)} \right) du = \kappa(\beta, r, \alpha^+) + K \tau^+(\beta \varrho_T) + o(\tau^+(\beta \varrho_T)), \quad (8.2)
\]

where \(K \) denotes some constant, and the function \(\kappa \) is continuous in its first argument with \(\kappa(1, r, \alpha^+) = \frac{\alpha^+}{\alpha^+ + r} \). Similarly, for \(\beta > 0 \) and an integer \(s \),

\[
\int_0^\infty \left(-\ln \left(1 + \frac{\beta u}{\varrho_T} \right) \right) \left(1 - \frac{\psi^+(u + \varrho_T)}{\psi^+(\varrho_T)} \right) \,' du = \tilde{\kappa}(\beta, s, \alpha^+) + K \tau^+(\beta \varrho_T) + o(\tau^+(\beta \varrho_T)), \quad (8.3)
\]

where \(K \) denotes some constant (generally different from the constant in the previous equation), and the function \(\tilde{\kappa} \) is continuous in its first argument with \(\tilde{\kappa}(1, s, \alpha^+) = (-\alpha^+)^{-s} \Gamma(s+1) \). Finally,

\[
\int_0^\infty \left(1 + \frac{u}{\varrho_T} \right)^{-r} \ln \left(1 + \frac{u}{\varrho_T} \right) \left(1 - \frac{\psi^+(u + \varrho_T)}{\psi^+(\varrho_T)} \right) \,' du = \frac{\alpha^+}{(\alpha^+ + 1)^2} + K \tau^+(\varrho_T) + o(\tau^+(\varrho_T)), \quad (8.4)
\]

where again \(K \) denotes some constant.

The proof proceeds in two steps by first showing consistency and then asymptotic normality.

Part 1. Consistency. First, from the definition of the random measure \(\mu \) and since \(TV^+(\varrho_T) \to \infty \), it follows that

\[
\frac{M_T}{TV^+(\varrho_T)} \to P(E(\varphi_i^+)). \quad (8.5)
\]

Then, using (8.2)-(8.3) and by a standard law of large numbers, for any fixed \(\xi \in (0, \infty) \) and \(\beta \in (0, \infty) \), \(\sigma = \xi \varrho_T / \beta \), we have

\[
\frac{1}{M_T} \sum_{t=1}^{T-1} \mathbf{x}_t \int_0^{\tau T+} \left[\int_{\varrho_T}^{x_0} \psi^+(x) \varrho_T - \varrho_T \right] \mu(dx, dx) \to \kappa(\beta, 1, \alpha^+) \frac{E\left[\mathbf{x}_t \int_0^{\tau T+} \varphi_i^+ ds \right]}{E(\varphi_i^+)},
\]

\[
\frac{1}{M_T} \sum_{t=1}^{T-1} \mathbf{x}_t \int_0^{\tau T+} \left[\int_{\varrho_T}^{x_0} \psi^+(x) \varrho_T - \varrho_T \right] \log(1 + \xi \psi^+(x_0 - \varrho_T) / \sigma) \varrho_T \mu(dx, dx) \to \tilde{\kappa}(\beta, 1, \alpha^+) \frac{E\left[\mathbf{x}_t \int_0^{\tau T+} \varphi_i^+ ds \right]}{E(\varphi_i^+)}. \quad (8.6)
\]

Moreover, since \(\log(1+x) \) and \(1/(1+x) \) are monotone in \(x \), the above convergence can be trivially extended to uniform over the sets \(\xi \in [0, K_\xi] \) and \(\beta \in (K_\beta, \infty] \) for any \(K_\xi > 0 \), \(K_\beta > 0 \).

Next, let \(\tilde{\theta} = (q_{T^{-1}})^{-1} \bullet \theta \), and define \(h_T(\tilde{\theta}) = g_T(\theta, \varrho_T) \) for \(\theta \in \Theta_T \). It follows that \(\tilde{\theta}_T = (q_{T^{-1}})^{-1} \bullet \hat{\theta}_T \) for \(\hat{\theta}_T = \arg\min_{\tilde{\theta} \in \Theta} h_T(\tilde{\theta}) \hat{W}_T h_T(\tilde{\theta}) \), where \(\Theta = \left\{ \tilde{\theta} : \alpha_i / \alpha^+ \leq \tilde{\theta}(i) \leq \alpha_i / \alpha^+, i = 1, 2 \right\} \).

Then, from (8.6) we have \(\sup_{\tilde{\theta} \in \Theta} \| h_T(\tilde{\theta}) - h(\tilde{\theta}) \| \to P 0 \), where

\[
h(\tilde{\theta}) = \frac{E\left[\mathbf{x}_t \int_0^{\tau T+} \varphi_i^+ ds \right]}{E(\varphi_i^+)} \times \left(-\frac{1}{(q_{T^{-1}})^2} \tilde{\kappa} \left(\frac{\tilde{\varrho}_T}{(q_{T^{-1}})^2}, 1, \alpha^+ \right) - \frac{1}{(q_{T^{-1}})^2} \left(1 + \frac{1}{(q_{T^{-1}})^2} \right) \kappa \left(\frac{\varrho_T}{(q_{T^{-1}})^2}, 1, \alpha^+ \right) \right).
\]
Thus, \(h(\tilde{\theta}) = 0 \), for \(\tilde{\theta} = (\tilde{\theta}_t^{-1})' \theta^0_t \). Further, the derivative of \(h(\tilde{\theta}) \) with respect to the parameter \(\tilde{\theta} \), when evaluated at the true value is nonsingular. Therefore, \(h(\tilde{\theta}) = 0 \) is solved uniquely by \(\tilde{\theta} = (\tilde{\theta}_t^{-1})' \theta^0_t \) in a local neighborhood, and this is consequently also the unique minimizer of \(h(\tilde{\theta})'Wh(\tilde{\theta}) \). This completes the proof of consistency as \(\argmin \) is a continuous transformation on the space of continuous functions equipped with the uniform topology.

Part 2. Asymptotic Normality.

Let \(\theta = \theta^0_T + \tilde{\theta} \), where \(\tilde{\theta} = \sqrt{T} \nabla^+ \psi(\theta) \mathbb{E}(\varphi^+_i) r \), for some \(r \in \mathbb{R}^2 \). Then, by a second-order Taylor expansion,

\[
\sqrt{M_T^+} g_T(\theta, \theta_T) = \sqrt{M_T^+} g_T(\theta^0_T, \theta_T) + \sqrt{M_T^+} G_T(\theta^0_T, \theta_T) \tilde{\theta} + R_T(\tilde{\theta}),
\]

where \(\tilde{\theta} \) denotes some value between \(\theta \) and \(\theta^0_T \), and \(H_t(\theta, z_t, \theta_T) \) are rescaled versions of \(H_t(\theta, z_t, \theta_T) \) defined from the above equality (extended to arbitrary \(\theta \)). The proof proceeds in several steps.

Step 1. We will prove \(\frac{1}{\sqrt{M^+}} \sum_{t=1}^{T-1} g_T(\theta^0_T, z_t, \theta_T) \xrightarrow{\mathbb{P}} \frac{1}{\mathbb{E}(\varphi^+_i)} \mathbf{d} \mathbf{Z} \), where \(\mathbf{d} \) is a matrix of constants such that \(\mathbf{d} \mathbf{d}' = \mathbf{V} \) for \(\mathbf{V} \) defined in (3.10) and \(\mathbf{Z} \) is the standard normal random vector of the theorem. To facilitate the proof, we decompose the moment vector into the two components,

\[
g_1(\theta, z_t, \theta_T) = \mathbf{x}_t \otimes \left(\int_{\varphi_T}^{t+1} \int_{\varphi_T}^{t+1} \phi^+_1(\psi(x) - \varphi_T, \theta^{(1)}, \theta^{(2)}) \mu(dx, dx) \right),
\]

\[
g_2(\theta, z_t, \theta_T) = \mathbf{x}_t \otimes \left(\int_{\varphi_T}^{t+1} \int_{\varphi_T}^{t+1} \phi^+_2(\psi(x) - \varphi_T, \theta^{(1)}, \theta^{(2)}) \nu(dx, dx) \right),
\]

so that by definition \(g_T(\theta^0_T, z_t, \theta_T) = g_1(\theta^0_T, z_t, \theta_T) + g_2(\theta^0_T, z_t, \theta_T) \).

We start by proving \(\frac{1}{\sqrt{M_T^+}} \sum_{t=1}^{T-1} g_2(\theta^0_T, z_t, \theta_T) \xrightarrow{\mathbb{P}} 0 \). Using the fact that for the true parameter value, \(\theta^0_T \), the ratio \(\frac{\varphi^+_i}{\varphi^+_i} = \varphi_T \), together with the definition of the score functions \(\phi^+_i \) and \(\phi^+_2 \) in (3.3), and the results in (8.1)-(8.4), the two elements of \(g(\theta^0_T, z_t, \theta_T) \) may be expressed as

\[
C \nabla^+ \psi(\varphi^+_i) \left(\tau^+(\varphi_T) + o(\tau^+(\varphi_T)) \right) \int_{t}^{t+1} \varphi^+_s ds,
\]

for some constant \(C \) which differ for each of the two elements. Since \(\sqrt{T} \nabla^+ \psi(\varphi_T T)n^+(\varphi_T) \to 0 \) and assumption A3 implies that the process \(\varphi^+_i \) is stationary and integrable, it follows that \(\frac{1}{\sqrt{T} \nabla^+ \psi(\varphi_T)} \sum_{t=1}^{T-1} \mathbb{E}||g_2(\theta^0_T, z_t, \theta_T)|| \xrightarrow{\mathbb{P}} 0 \). Combining this result with (8.5), we have

\[
\frac{1}{\sqrt{M_T^+}} \sum_{t=1}^{T-1} g_2(\theta^0_T, z_t, \theta_T) \xrightarrow{\mathbb{P}} 0.
\]
We are left with showing that \(\frac{1}{\sqrt{M_T}} \sum_{t=1}^{T-1} g_1(\theta_T^0, z_t, \varrho_T) \xrightarrow{\mathcal{L}} \frac{1}{\sqrt{2(\varrho_T^*)}} dZ \). In lieu of (8.5), this convergence will follow from a Central Limit Theorem for a triangular array; see, e.g., Jacod and Shiryaev (2003), Theorem VIII.2.29. Thus, it suffices to prove that

\[
\begin{align*}
\left\{ \frac{1}{T^{1/2} \varrho_T} \sum_{t=1}^{T-1} \mathbb{E}_t g_1(\theta_T^0, z_t, \varrho_T) \right\} & \xrightarrow{\mathbb{P}} 0, \\
\left\{ \frac{1}{T^{1/2} \varrho_T} \sum_{t=1}^{T-1} \mathbb{E}_t [g_1(\theta_T^0, z_t, \varrho_T) g_1(\theta_T, z_t, \varrho_T)]' \right\} & \rightarrow \mathbb{D}', \\
\left\{ \frac{1}{(T^{1/2} \varrho_T)^{1+\alpha/2}} \sum_{t=1}^{T-1} \mathbb{E}_t ||g_1^{(i)}(\theta_T^0, z_t, \varrho_T)||^{2+\alpha} \right\} & \xrightarrow{\mathbb{P}} 0, \quad \text{for some } \alpha > 0 \text{ and } i = 1, 2.
\end{align*}
\]

The first condition in (8.7) is trivially satisfied, as \(\{g_1(\theta_T^0, z_t, \varrho_T)\}_{t=1,2,\ldots} \) is a martingale difference sequence. To show the second convergence in (8.7), note that for \(i, j = 1, \ldots, 2q \),

\[
\mathbb{E}_t \left(g_1^{(i)}(\theta_T^0, z_t, \varrho_T) g_1^{(j)}(\theta_T^0, z_t, \varrho_T) \right) = \mathbb{E}_t \left[\int_t^{t+1} \int_{\psi(x) > \varrho_T} \zeta_1(x) \mu(ds, dx) \int_t^{t+1} \int_{\psi(x) > \varrho_T} \zeta_2(x) \mu(ds, dx) \right]
\]

\[
= \mathbb{E}_t \left[\int_{\psi(x) > \varrho_T} \zeta_1(x) \zeta_2(x) \nu(x) dx \right] = \mathbb{E}_t \left[\int_{t}^{t+1} \varphi_s^+ ds \right],
\]

where \(\lceil x \rceil \) denotes the least integer higher or equal to \(x \). \(\zeta_1(x) \) and \(\zeta_2(x) \) are one of the functions that appear as integrands of \(\mu \) in the definition of \(g_1(\theta, z_t, \varrho_T) \), and the second equality follows from Itô’s lemma. Now, using the results in (8.1)-(8.4), we can may

\[
\int_{\psi(x) > \varrho_T} \zeta_1(x) \zeta_2(x) \nu(x) dx = \vartheta^+_{\psi}(\varrho_T) \left(K + \tau^+_{\varrho_T} + o(\tau^+_{\varrho_T}) \right),
\]

where the constant \(K \) is the corresponding element of \(\Sigma \) in (3.7). Also, by assumption A3 the process \(\varphi_t^+ \) is stationary and integrable and by the additional assumptions of the theorem we get

\[
\frac{1}{T} \sum_{t=1}^{T-1} x_t x'_t \mathbb{E}_t \left(\int_{t}^{t+1} \varphi_s^+ ds \right) \xrightarrow{\mathbb{P}} \mathbb{E} \left(x_t x'_t \int_{t}^{t+1} \varphi_s^+ ds \right).
\]

To prove the third part of (8.7), let \(\alpha \leq 2 \) such that \(\mathbb{E}|\varphi_t^+|^{1+\alpha} < \infty \). The existence of \(\alpha \) is guaranteed by assumption A3. Using the Burkholder-Davis-Gundy inequality,

\[
\mathbb{E}_t \left[\int_{t}^{t+1} \int_{\psi(x) > \varrho_T} \zeta(x) \mu(dx, ds) \right]^{2+\alpha} \leq \mathbb{E}_t \left[\int_{t}^{t+1} \int_{\psi(x) > \varrho_T} \zeta^2(x) \mu(dx, ds) \right]^{1+\alpha/2},
\]

where \(\zeta(x) \) is one of the integrands of \(\mu \) in \(g_1(\theta, z_t, \varrho_T) \). Further,

\[
\mathbb{E}_t \left(\int_{t}^{t+1} \int_{\psi(x) > \varrho_T} \zeta^2(x) \mu(ds, dx) \right)^{1+\alpha/2} \leq K \mathbb{E}_t \left(\int_{t}^{t+1} \int_{\psi(x) > \varrho_T} \zeta^2(x) \mu(ds, dx) \right)^{1+\alpha/2} + K \mathbb{E}_t \left(\int_{t}^{t+1} \varphi_s^+ ds \right)^{1+\alpha/2},
\]

31
for some constant $K > 0$. For the first term on the right hand side above, applying again the Burkholder-Davis-Gundy inequality, then the inequality $(\sum_i |a_i|)^p \leq \sum_i |a_i|^p$ for $0 < p \leq 1$, and the fact that $\alpha \leq 2$, together with the definition of the jump compensator, we have

$$
\mathbb{E}_t \left| \int_t^{t+1} \int_{\psi(x) > \varrho_T} \zeta^2(x) \tilde{\mu}(ds, dx) \right|^{1+\alpha/2} \leq K \int_t^{t+1} \int_{\psi(x) > \varrho_T} |\zeta(x)|^{2+\alpha} \nu(x) dx \mathbb{E}_t \left(\int_t^{t+1} \varphi_s^+ ds \right).
$$

The third result of (8.7) now follows directly.

Step 2. We next show $\sqrt{M_T^2 G_T(\theta^0, \varrho_T) \bar{r}} \overset{p}{\rightarrow} \frac{1}{\mathbb{E}(\varphi^+_T)} \Pi \bar{r}$ locally uniformly in r where Π is defined in (3.10). We denote with $G_1(\theta, z_t, \varrho_T)$ the $2q \times 2$ matrix with the following elements for $i = 1, ..., 2q$,

$$
G^{(ij)}_1(\theta, z_t, \varrho_T) = x_i[(1/2)] \left\{ \begin{array}{ll}
\frac{\vartheta_{\alpha}}{\alpha} \int_t^{t+1} \int_{\psi(x) > \varrho_T} \frac{\partial \varphi_{\alpha}^+}{\partial \varphi_{\alpha}^+} (\psi(x) - \varrho_T, \varrho_T, \varrho_T, \varrho_T) \tilde{\mu}(ds, dx), & j = 1, \\
\int_t^{t+1} \int_{\psi(x) > \varrho_T} \frac{\partial \varphi_{\alpha}^+}{\partial \varphi_{\alpha}^+} (\psi(x) - \varrho_T, \varrho_T, \varrho_T, \varrho_T) \tilde{\mu}(ds, dx), & j = 2,
\end{array} \right.
$$

where i_q is 1 for i odd and $i_q = 2$ for i even. As in the previous step, it is possible to show

$$
\frac{1}{\sqrt{M_T^2}} \sum_{t=1}^{T-1} G_1(\theta^0, z_t, \varrho_T) \overset{L}{\leq} b Z, \quad \text{where } b \text{ is some vector of constants and } Z \text{ is a standard normal vector.}
$$

Therefore

$$
\frac{1}{\sqrt{M_T^2}} \sum_{t=1}^{T-1} \tilde{G}_1(\theta^0, z_t, \varrho_T) \overset{p}{\rightarrow} 0, \quad \text{for } \tilde{G}_1(\theta_T, z_t, \varrho_T) = \frac{1}{\sqrt{M_T^2(\varrho_T)\mathbb{E}(|\varphi^+_T|)}} G_1(\theta^0, z_t, \varrho_T).
$$

Next, define the $G_2(\theta, z_t, \varrho_T)$ matrix such that $G_2(\theta, z_t, \varrho_T) r = G(\theta, z_t, \varrho_T) r - \tilde{G}_1(\theta, z_t, \varrho_T) r$ for every r. We are then left with showing

$$
\frac{1}{T} \sum_{t=1}^{T-1} G_2(\theta^0, z_t, \varrho_T) \overset{p}{\rightarrow} \frac{1}{\mathbb{E}(\varphi^+_T)} \Pi.
$$

Using the results in (8.1)-(8.5) it is possible to show that the above matrix sequence is equal to

$$
\frac{1}{\mathbb{E}(\varphi^+_T)} \left(\frac{1}{T} \sum_{t=1}^{T-1} x_i \int_t^{t+1} \varphi_s^+ ds \right) \otimes (-\Sigma + K_T) + o_p(1),
$$

where K_T is a 2×2 matrix with $||K_T|| = C_\tau^+(\varrho_T) + o(\tau^+(\varrho_T))$ for C some constant. Since

$$
\sqrt{T \nu}(\varrho_T) \tau^+(\varrho_T) \rightarrow 0,
$$

we use the assumption in the theorem for

$$
\frac{1}{T} \sum_{t=1}^{T-1} x_i [(1/2)] \int_t^{t+1} \varphi_s^+ ds,
$$

it follows that it converges in probability. But Π is of full column rank by our assumption

$$
\mathbb{E} \left(x_i \int_t^{t+1} \varphi_s^+ ds \right) \neq 0,
$$

thus proving the claim of this step.

Step 3. We show that $\sup_{\theta \in \Theta_T} || \sum_{t=1}^{T-1} \tilde{H}_i(\theta, z_t, \varrho_T) ||$ is bounded in probability for $i = 1, ..., 2q$. Since $\theta \in \Theta_T$, it is easy to see that each element of $\sum_{t=1}^{T-1} \tilde{H}_i(\theta, z_t, \varrho_T)$ is bounded by

$$
\frac{1}{\sqrt{T \nu}(\varrho_T)} \sum_{t=1}^{T-1} ||x_i|| \int_t^{t+1} \int_{\psi(x) > \varrho_T} \phi(\psi(x) - \varrho_T) \mu(ds, dx),
$$

for some positive valued function $\phi(x)$ that does not depend on θ and further $\int_{\psi(x) > \varrho_T} \phi(\psi(x) - \varrho_T) \mu(x) dx \leq C T \nu(\varrho_T)$ for $C > 0$ a constant. This then implies the result of the step.

Combining steps 1-3, we have $\hat{\theta}_T \overset{p}{\rightarrow} \sqrt{T \nu}(\varrho_T)$-consistent (for the first parameter the ratio of the estimate to the limit) and for $\theta = \theta^0 + \tilde{r}$, $\sqrt{M_T^2 g_T(\theta, \varrho_T) \bar{r}}$ converges uniformly in r (restricted
such that corresponding \(\theta \in \Theta_T \) to \(\frac{1}{\sqrt{E(\varphi^+)}^T}dZ + \frac{1}{E(\varphi^+)}^T \Pi \). The result in (3.9) then readily follows (see e.g., Theorem 5.56 of van der Vaart (1999)).

8.3 Proofs of Corollary 1

(a) Part 1. Consistency. Define \(\tilde{\theta} = (\theta|^{-1} 1/\psi^+(\vartheta_T) 1/\psi^+(\vartheta_T))' \bullet \theta \) and \(h_T(\tilde{\theta}) \) from \(g_T(\theta, \vartheta_T) \) as in the proof of Theorem 2. Then, using the proof of Theorem 2, as well as the assumption for \(\varphi^+ \) in Corollary 1, we have \(\sup_{\vartheta \in \mathbb{E}} ||h_T(\tilde{\theta}) - h(\tilde{\theta})||_P \to 0 \), where the first four elements of \(h(\tilde{\theta}) \) are the same as in that theorem, and the last two elements are given by

\[
E \left\{ x_t \otimes \left[(\tilde{\varphi}^{(3)} - k_0^+) + (\tilde{\varphi}^{(4)} - k_1^+) \int_t^{t+1} \sigma_s^2 ds \right] \right\} \left/ k_0^+ + k_1^+ E(\sigma_t^2) \right.
(8.8)

From here the consistency follows by the same reasoning as in the proof of Theorem 2.

Part 2. Asymptotic Normality. The proof essentially goes through the same steps as the proof of asymptotic normality in Theorem 2, and we only point the differences. Define \(\theta = \theta_T^0 + \tilde{\theta} \), where now \(\tilde{\theta} = \frac{1}{T} \tilde{T}^+ \psi^+(\vartheta_T) E(\varphi^+) \theta \), with

\[
\frac{1}{T} \tilde{T}^+ \psi^+(\vartheta_T) E(\varphi^+) \theta = \left(\frac{1}{T} \int_t^{t+1} \int_{\psi^+(x) > \vartheta_T} \mu(ds, dx) - k_0^+ - k_1^+ \int_t^{t+1} \sigma_s^2 ds \right).
\]

Step 1 of the proof then follows directly from the corresponding step of the proof of Theorem 2 upon recognizing that under the assumption of Corollary 1, \(\int_t^{t+1} \int_{\psi^+(x) > \vartheta_T} \mu(ds, dx) - k_0^+ - k_1^+ \int_t^{t+1} \sigma_s^2 ds \) is a martingale increment. For step 2, we note that \(G_T(\theta, \vartheta_T)_{i,j} = 0 \) for \(i = 1, \ldots, 4 \) and \(j = 3, 4 \), as well as for \(i = 5, 6 \) and \(j = 1, 2 \), and further \(G_T(\theta, \vartheta_T)_{i=5,6, j=3,4} = - \left(\frac{1}{M_T} \sum_{t=1}^{T-1} x_t \right) \). From here step 2 of the proof follows by analogy to the proof of Theorem 2 and a Law of Large numbers. Finally, for step 3 we note that \(H_k(\theta, \vartheta_T)_{i,j} = 0 \) for \(k = 1, \ldots, 4 \), \(i = 3, 4 \), and \(j = 3, 4 \), as well as for \(k = 5, 6 \) and all \(i, j = 1, \ldots, 6 \), so that this step follows directly from the corresponding step in the proof of Theorem 2.

(b) By assumption A2(b), \(\sqrt{M_T} \left(\frac{k_1^+ \psi^+(\vartheta_T) \eta^{-1} - \tilde{k}_1^+}{\psi^+(\vartheta_T)} \right) = \sqrt{M_T} \left(\frac{L^+(\vartheta_T)}{L^+(\vartheta_T)} - 1 \right) k_1^+ = \sqrt{M_T} O(\tau^+(\vartheta_T)) \) for \(i = 0, 1 \). Using condition (3.6) and the result in (8.5), it follows that this term is asymptotically negligible. We are therefore left with the difference \(\sqrt{M_T} \left(\frac{k_1^+ \psi^+(\vartheta_T) \eta^{-1} - \tilde{k}_1^+}{\psi^+(\vartheta_T)} \right) \),

for which we may use part (a) and a delta method.

8.4 Proofs of Theorem 3 and Corollary 2

We start by establishing several preliminary lemmas. In what follows we will use the short-hand notation \(\mathbb{E}_n^\theta \) for \(\mathbb{E}(.|\mathcal{F}_{\Delta_n}) \), and \(\mathbb{P}_n^\theta \) for \(\mathbb{P}(.|\mathcal{F}_{\Delta_n}) \). For notational convenience, we will also use \(C \) to denote a positive constant (independent from \(T \) and \(\Delta_n \)), where its value might change from line to line.
Lemma 1 Suppose we observe the process p_t at the discrete times $0, \Delta_n, 2\Delta_n, \ldots, \lfloor T/\Delta_n \rfloor \Delta_n$, and assume that A1 and A4 hold. Then for some $\alpha > 0$ and $\omega \in (0, \tfrac{1}{2})$, we have

$$\frac{\sqrt{N_T}}{T} \left(\sum_{i=1}^{\lfloor T/\Delta_n \rfloor} (\Delta_i^np_i^2 1_{\{\Delta_i^np_i \leq \alpha \Delta_n^p\}} - \int_0^T \sigma_s^2 ds) \right) \overset{P}{\to} 0, \quad \text{as } T \uparrow \infty, \ \Delta_n \downarrow 0, \quad (8.9)$$

where $\Delta_i^np_i = p_i\Delta_n - p_{i-1}\Delta_n$, and $N_T \to \infty$ denotes some deterministic sequence of T with the property that $\frac{\sqrt{N_T}}{T} (2-\beta) \Delta_n^{\beta/2 - \epsilon} \to 0$ for $\epsilon > 0$ arbitrary small.

Proof: By definition we have

$$\left((\Delta_i^np_i^2 1_{\{\Delta_i^np_i \leq \alpha \Delta_n^p\}} - \int_0^{\Delta_n} \sigma_s^2 ds) \right) = \sum_{j=1}^7 a_j, \quad a_1 = \left((\Delta_i^np_i^2 - \int_0^{\Delta_n} \sigma_s^2 ds) \right),$$

$$a_2 = - (\Delta_i^np_i^2 1_{\{\Delta_i^np_i > \alpha \Delta_n^p\}}), \quad a_3 = (\Delta_i^np_i^2 1_{\{\Delta_i^np_i \leq \alpha \Delta_n^p\}}), \quad a_4 = 2\Delta_i^n \tilde{Z} \Delta_i^n \tilde{Y},$$

$$a_5 = 2\Delta_i^n \tilde{Z} \Delta_i^n \tilde{Y}, \quad a_6 = -2\Delta_i^n \tilde{Z} \Delta_i^n Y 1_{\{\Delta_i^np_i > \alpha \Delta_n^p\}}, \quad a_7 = 2\Delta_i^n \tilde{Z} \Delta_i^n Y 1_{\{\Delta_i^np_i \leq \alpha \Delta_n^p\}},$$

where,

$$Z_t = \int_0^t \sigma_s dW_s + \int_0^t \alpha_s ds, \quad \tilde{Z}_t = \sigma_{t-1} \Delta_n W_t,$$

$$Y_t = \int_0^t \int_\mathbb{R} \kappa(x) \tilde{\mu}(ds, dx) + \int_0^t \int_\mathbb{R} \kappa'(x) \mu(dx, ds) + 1_{\{\beta < 1\}} \int_0^t \int_\mathbb{R} \kappa(x) ds d\nu_s(dx),$$

$$\tilde{Y}_t = \int_0^t \int_\mathbb{R} \kappa'(x) ds d\nu_s(dx) + 1_{\{\beta < 1\}} \int_0^t \int_\mathbb{R} \kappa(x) d\nu_s(dx), \quad \tilde{Y}_t = Y_t - \tilde{Y}_t.$$

We need an alternative representation of the jumps, which we define on an extension (if needed) of the original probability space. In this representation jumps are defined from a homogenous Poisson measure via thinning, i.e.,

$$Y_t^{(1)} = \begin{cases}
\int_0^t \int_\mathbb{R} \kappa(x) \left(1_{\{x < 0, u < \varphi_{(t-1)\Delta_n}^- \}} + 1_{\{x > 0, u < \varphi_{(t-1)\Delta_n}^+ \}} \right) \tilde{\mu}(ds, du, dx) \\
+ \int_0^t \int_\mathbb{R} \kappa(x) \left(1_{\{x < 0, u < \varphi_{(t-1)\Delta_n}^- \}} + 1_{\{x > 0, u < \varphi_{(t-1)\Delta_n}^+ \}} \right) \mu(ds, du, dx) \\
\end{cases} \quad \text{if } \beta \geq 1,$$

$$Y_t^{(2)} = \begin{cases}
\int_0^t \int_\mathbb{R} \kappa(x) \left(1_{\{x < 0, u < \varphi_{-}^- \}} - 1_{\{x < 0, u < \varphi_{(t-1)\Delta_n}^- \}} \right) \tilde{\mu}(ds, du, dx) \\
+ \int_0^t \int_\mathbb{R} \kappa(x) \left(1_{\{x > 0, u < \varphi_{-}^+ \}} - 1_{\{x > 0, u < \varphi_{(t-1)\Delta_n}^+ \}} \right) \mu(ds, du, dx) \\
+ \int_0^t \int_\mathbb{R} \kappa'(x) \left(1_{\{x < 0, u < \varphi_{-}^- \}} - 1_{\{x < 0, u < \varphi_{(t-1)\Delta_n}^- \}} \right) \mu(ds, du, dx) \\
+ \int_0^t \int_\mathbb{R} \kappa'(x) \left(1_{\{x > 0, u < \varphi_{-}^+ \}} - 1_{\{x > 0, u < \varphi_{(t-1)\Delta_n}^+ \}} \right) \mu(ds, du, dx) \\
\end{cases} \quad \text{if } \beta < 1,$$

$$Y_t^{(3)} = \begin{cases}
\int_0^t \int_\mathbb{R} \kappa(x) \left(1_{\{x < 0, u < \varphi_{+}^- \}} - 1_{\{x < 0, u < \varphi_{(t-1)\Delta_n}^- \}} \right) \tilde{\mu}(ds, du, dx) \\
+ \int_0^t \int_\mathbb{R} \kappa(x) \left(1_{\{x > 0, u < \varphi_{+}^+ \}} - 1_{\{x > 0, u < \varphi_{(t-1)\Delta_n}^+ \}} \right) \mu(ds, du, dx) \\
+ \int_0^t \int_\mathbb{R} \kappa'(x) \left(1_{\{x < 0, u < \varphi_{+}^- \}} - 1_{\{x < 0, u < \varphi_{(t-1)\Delta_n}^- \}} \right) \mu(ds, du, dx) \\
+ \int_0^t \int_\mathbb{R} \kappa'(x) \left(1_{\{x > 0, u < \varphi_{+}^+ \}} - 1_{\{x > 0, u < \varphi_{(t-1)\Delta_n}^+ \}} \right) \mu(ds, du, dx) \\
\end{cases} \quad \text{if } \beta \geq 1,$$

$$Y_t^{(4)} = \begin{cases}
\int_0^t \int_\mathbb{R} \kappa(x) \left(1_{\{x < 0, u < \varphi_{+}^- \}} - 1_{\{x < 0, u < \varphi_{(t-1)\Delta_n}^- \}} \right) \tilde{\mu}(ds, du, dx) \\
+ \int_0^t \int_\mathbb{R} \kappa(x) \left(1_{\{x > 0, u < \varphi_{+}^+ \}} - 1_{\{x > 0, u < \varphi_{(t-1)\Delta_n}^+ \}} \right) \mu(ds, du, dx) \\
+ \int_0^t \int_\mathbb{R} \kappa'(x) \left(1_{\{x < 0, u < \varphi_{+}^- \}} - 1_{\{x < 0, u < \varphi_{(t-1)\Delta_n}^- \}} \right) \mu(ds, du, dx) \\
+ \int_0^t \int_\mathbb{R} \kappa'(x) \left(1_{\{x > 0, u < \varphi_{+}^+ \}} - 1_{\{x > 0, u < \varphi_{(t-1)\Delta_n}^+ \}} \right) \mu(ds, du, dx) \\
\end{cases} \quad \text{if } \beta < 1,$$
where μ denotes a Poisson measure with compensator $ds \otimes du \otimes \nu(x)dx$. The rest of the proof consists in showing the asymptotic negligibility of the scaled sums of the terms a^j_k, $j = 1, \ldots, 7$, and their respective subcomponents. We will use convergence in L_1 or L_2 norm for proving this.

We begin with the term a_1^2. Application of Itô’s lemma yields the decomposition $a_1^2 = \tilde{a}_1^2 + \hat{a}_1^2$, where

$$\tilde{a}_1^2 = 2\int_{(i-1)L}^{iL} Z^n_s \tilde{\alpha}_s ds, \quad \hat{a}_1^2 = 2\int_{(i-1)L}^{iL} Z^n_s \sigma_s dW_s, \quad Z^n_s = Z_s - Z_{(i-1)L}.$$

We have for $q \geq 1$

$$E|\tilde{a}_1^2|^q \leq C \Delta_n^{2q/2}.$$

Also, for $q \geq 2$ using Doob’s inequality and the Cauchy-Schwartz inequality,

$$E_n |\hat{a}_1^2|^q \leq C \left(\int_{(i-1)L}^{iL} (Z^n_s \sigma_s)^2 ds \right)^{q/2} \leq C \Delta_n^{q/2 - 1} \int_{(i-1)L}^{iL} E [Z^n_s \sigma_s]^q ds \leq C \Delta_n^q.$$

Using Holder’s inequality for any $1 \leq q < p/2$,

$$E|a_1^3|^q \leq (E|\Delta_n^q Z|^p)^{q/p} \left(\mathbb{P} (|\Delta_n^q Z|^p \geq \alpha \Delta_n^\omega) \right)^{1-2q/p} \leq C \Delta_n^{q/(1-2q/p)(1-\beta \omega)^-} \epsilon > 0.$$

We proceed with a_1^3 and the following decomposition, $|a_1^3| \leq |\alpha_1^3| + |\beta_1^3| + |\hat{a}_1^3|$, for

$$\beta_1^3 = (\Delta_1^n Y)^2 1_{\{\Delta_1^n Y \leq 1.5 \alpha \Delta_n^\omega\}}, \quad \beta_1^3 = (\Delta_1^n Y)^2 1_{\{\Delta_1^n Y \geq 0.25 \alpha \Delta_n^\omega\}}, \quad \beta_1^3 = (\Delta_1^n Y)^2 1_{\{\Delta_1^n Y \geq 0.25 \alpha \Delta_n^\omega\}}.$$

Then, for any $\epsilon > 0$ and $q \geq 2/q + \beta/2$,

$$E|\beta_1^3|^q \leq C \Delta_n^{2q-\beta-\epsilon} \epsilon |E|\Delta_1^n Y|^{\beta+\epsilon} \leq C \Delta_n^{2q-2q/p-2q}\epsilon.$$

For $q < p/2$, we can write

$$E|\beta_1^3|^q \leq C \left(\int_{(i-1)L}^{iL} |\tilde{\alpha}_s| ds \right)^{2q/p} \left(\mathbb{P} (|\tilde{\alpha}_s|^q \geq 0.25 \alpha \Delta_n^\omega) \right)^{1-(2q/p)} \leq C \Delta_n^{2q+(1-\omega)(p-2q)}.$$

Further we can bound $E|\beta_1^3|^{q} \leq C \left(E|\beta_1^3(1)|^{q} + E|\beta_1^3(2)|^{q} \right)$ for

$$\beta_1^3(1) = (\Delta_1^n Y(1))^2 1_{\{\Delta_1^n Y(1) \geq 0.25 \alpha \Delta_n^\omega\}}, \quad \beta_1^3(2) = (\Delta_1^n Y(2))^2 1_{\{\Delta_1^n Y(2) \geq 0.25 \alpha \Delta_n^\omega\}},$$

where Δ_1^n is defined on the probability space of $Y^{(1)}_t$, and $Y^{(2)}_t$ is the same process on the original probability space, and for simplicity we have kept the same notation. Then, for $1 \leq q < p/2$,

$$E|\beta_1^3(1)|^{q} \leq E \left(E_{i-1}^{n} |\Delta_1^n Y(1)|^{2q} E_{i-1}^{n} \left(1_{\{\Delta_1^n Y(1) \geq 0.25 \alpha \Delta_n^\omega\}} \right) \right) \leq C \Delta_n^{(1+\omega)(p-2)}.$$

Using Holder’s inequality, it follows that for every $x > 1$,

$$E|\beta_1^3(2)|^{q} \leq \left(E|\Delta_1^n Y(2)|^{2q} \right)^{1/x} \left(\mathbb{P} \left(\left| \Delta_1^n Y \right| \geq 0.25 \alpha \Delta_n^\omega \right) \right)^{1-1/x} \leq C \Delta_n^{2q+(1-\omega)(p-2)}.$$
Next, note that $\mathbb{E}_{i-1}^{n} \alpha_i = 0$, and $2 \leq q < p$,
\[
\mathbb{E}|a_i^q|^q \leq C \left(\mathbb{E} |\Delta_i^n \bar{Z}|^p \right)^{q/p} \left(\mathbb{E} |\Delta_i^n \bar{Y}|^{\frac{q \alpha}{p-q}} \right)^{1-q/p} \leq C \Delta_i^{1+q(1/2-1/p)}.
\]
The a_i^5 term may be decomposed as $a_i^5 = \tilde{a}_i^5 + \hat{a}_i^5$,
\[
\tilde{a}_i^5 = \Delta_n(C^+ \varphi_i^+ (i-1) \Delta_n - C^- \varphi_i^- (i-1) \Delta_n) \Delta_i^n \bar{Z},
\]
\[
\hat{a}_i^5 = \Delta_i^n \bar{Z} \int_{(i-1) \Delta_n}^{i \Delta_n} (C^+ (\varphi_s^+ - \varphi_i^+ (i-1) \Delta_n) + C^- (\varphi_s^- - \varphi_i^- (i-1) \Delta_n)) ds,
\]
where C^+ and C^- are some constants. Thus for $q \geq 2$,
\[
\mathbb{E}_{i-1}^{n} \tilde{a}_i^5 = 0, \quad \mathbb{E}|\hat{a}_i^5|^q \leq C \Delta_i^{3q/2}.
\]
Application of Holder’s inequality for $q \geq 1$ and arbitrary small $\epsilon > 0$ implies that
\[
\mathbb{E}|\hat{a}_i^5|^q \leq C \Delta_i^{3q/2+q/2\lambda^{1-\epsilon}}.
\]
We turn now to a_i^6, which may be bounded by $|a_i^6| \leq |a_i^{6a}| + |a_i^{6b}| + |a_i^{6c}|$ where
\[
a_i^{6a} = 2 \tilde{Z_i^n} \Delta_i^n \bar{Y} 1_{\{|\tilde{Z_i^n}| > 0.25 \alpha \Delta_i^n\}}, \quad a_i^{6b} = 2 \hat{Z_i^n} \Delta_i^n \bar{Y} 1_{\{|\hat{Z_i^n}| > 0.5 \alpha \Delta_i^n\}}, \quad a_i^{6c} = 2 \hat{Z_i^n} \Delta_i^n \bar{Y} 1_{\{|\hat{Z_i^n}| > 0.25 \alpha \Delta_i^n\}}.
\]
For a_i^{6a} and $p > q \vee \beta$, we can apply Holder’s inequality twice together with the fact that moments of all powers of the normal distribution exist, to conclude that for some small $\epsilon > 0$,
\[
\mathbb{E}|a_i^{6a}|^q \leq C \left(\mathbb{E} |\Delta_i^n \bar{Y}|^p \right)^{q/p} \left(\mathbb{E} \left| \sigma_i(i-1) \Delta_n \left| \frac{q \alpha}{p-q} \right| \Delta_i^n W \left| \frac{q \alpha}{p-q} \right| 1_{\{|\tilde{Z_i^n}| > 0.25 \alpha \Delta_i^n\}} \right) \right)^{1-q/p}
\]
\[
\leq C \Delta_i^{\frac{q}{2}+q/2} \left(\mathbb{E} \left(|\sigma_i(i-1) \Delta_n \left| \frac{q \alpha}{p-q} \right| 1_{\{|\tilde{Z_i^n}| > 0.25 \alpha \Delta_i^n\}} \right) \right)^{1-q/p} \leq C \Delta_i^{\frac{q}{2}+q/2} \Delta_i^{(\frac{q}{2}-\epsilon)\left(\frac{p-q}{1+\epsilon}\right)}.
\]
Next for a_i^{6b} we have $\mathbb{E}|a_i^{6b}|^q \leq C \left(\mathbb{E}|a_i^{6b}(1)|^q + \mathbb{E}|a_i^{6b}(2)|^q + \mathbb{E}|a_i^{6b}(3)|^q \right)$, where
\[
a_i^{6b}(1) = 2 \tilde{Z_i^n} \Delta_i^n \bar{Y} 1_{\{|\tilde{Z_i^n}| Y(1) > 0.25 \alpha \Delta_i^n\}},
\]
\[
a_i^{6b}(2) = 2 \hat{Z_i^n} \Delta_i^n \bar{Y} 1_{\{|\hat{Z_i^n}| Y(2) > 0.25 \alpha \Delta_i^n\}}, \quad a_i^{6b}(3) = 2 \hat{Z_i^n} \Delta_i^n \bar{Y} 1_{\{|\hat{Z_i^n}| Y(3) > 0.5 \alpha \Delta_i^n\}}.
\]
Now, $\mathbb{E}_{i-1}^{n} a_i^{6b}(1) = 0$ and for some arbitrary small $\epsilon > 0$,
\[
\mathbb{E}|a_i^{6b}(1)|^q \leq C \mathbb{E} \left(\mathbb{E}_{i-1}^{n} |\bar{Z_i^n}|^q \mathbb{E}_{i-1}^{n} \left(|\Delta_i^n \bar{Y}(1)|^q 1_{\{|\Delta_i^n \bar{Y}(1)| > 0.25 \alpha \Delta_i^n\}} \right) \right) \leq C \Delta_i^{1+q/2-((\beta-q)\vee 0)\epsilon - \epsilon}.
\]
For $p > q \vee \beta$ and any $\epsilon > 0$,
\[
\mathbb{E}|a_i^{6b}(2)|^q \leq C \left(\mathbb{E} |\tilde{Z_i^n} \Delta_i^n \bar{Y}(1)|^p \right)^{q/p} \left(\mathbb{E} \left(1_{\{|\Delta_i^n \bar{Y}(2)| > 0.25 \alpha \Delta_i^n\}} \right) \right)^{1-q/p} \leq C \Delta_i^{\frac{q}{2}+\frac{q}{2}(1-\frac{q}{p})(\frac{2}{2}-\beta\epsilon) - \epsilon}.
\]
By Holder’s inequality for any \(\epsilon > 0 \) and \(q < p \),
\[
\mathbb{E}[\tilde{a}_i^{6b}(3)]^q \leq C \left(\mathbb{E}[\tilde{Z}_i^n]^p \right)^{q/p} \left(\mathbb{E}[\Delta_i^n Y^{(2)}|q/p-q])^{1-q/p} \leq C \Delta_n^{\frac{q}{2} + \frac{1}{q} + \frac{1}{2} + (\frac{1}{q} - \frac{1}{p})} q^{-\epsilon}.
\]

Next, note that \(\mathbb{E}[\tilde{a}_i^{6c}]^q \leq C (\mathbb{E}[\tilde{a}_i^{6c}(1)]^q + \mathbb{E}[\tilde{a}_i^{6c}(2)]^q) \), where
\[
a_i^{6c}(1) = 2\tilde{Z}_i^n \Delta_i^n Y^{(1)} 1_{\{\tilde{Z}_i^n > 0.25a \Delta_n^p\}}, \quad a_i^{6c}(2) = 2\tilde{Z}_i^n \Delta_i^n Y^{(2)} 1_{\{\tilde{Z}_i^n > 0.25a \Delta_n^p\}}.
\]

It follows that for \(q < p \),
\[
\mathbb{E}[\tilde{a}_i^{6c}(1)]^q \leq C \mathbb{E} \left(\mathbb{E}_i^{n-1} \left(|\tilde{Z}_i^n|^q 1_{|\tilde{Z}_i^n| > 0.25a \Delta_n^p} \right) \right) \leq C \Delta_n^{\frac{q}{2} + \frac{1}{q} + \frac{1}{2} + (\frac{1}{q} - \frac{1}{p})} q^{-\epsilon}.
\]

For \(a_i^{6c}(2) \), we can proceed the same way as for \(\tilde{a}_i^{6b}(3) \) to show that for any \(\epsilon > 0 \) and \(q < p \),
\[
\mathbb{E}[\tilde{a}_i^{6c}(2)]^q \leq C \left(\mathbb{E}[\tilde{Z}_i^n|^p] \right)^{q/p} \left(\mathbb{E}[\Delta_i^n Y^{(2)}|q/p-q])^{1-q/p} \leq C \Delta_n^{\frac{q}{2} + \frac{1}{q} + \frac{1}{2} + (\frac{1}{q} - \frac{1}{p})} q^{-\epsilon}.
\]

Using the integrability conditions on \(\alpha_s \) and \(\sigma_s \), and Holder’s inequality, we have
\[
\mathbb{E}[a_i^n]^q \leq C \mathbb{E} \left(|\Delta_i^n \tilde{Z} \Delta_i^n Y|q 1_{\{\Delta_i^n Y| \leq a \Delta_n^p\}} \right) \leq \Delta_n^{q/2 + 1 + (q - \beta)\alpha} + 1 - \epsilon, \quad \epsilon > 0.
\]

\[\square\]

Lemma 2 Suppose we observe the process \(p_t \) at the discrete times \(0, \Delta_n, \ldots, n \Delta_n, \ldots, \), \(t + \Delta_n, \ldots, \), \(t + n \Delta_n, \ldots \). Assume that A1-A4 hold, and let either \(X_t = \int_t^{t+1} \sigma^2 ds \), or \(X_t = \int_t^{t+1} \int_{\psi(x) > \theta} \phi^+(\psi(x) - \vartheta_T, \vartheta^{(1)}, \vartheta^{(2)}) \mu(ds, dx) \), for \(i = 1, 2 \) and \(\theta \in \Theta_T \). Then for some \(\alpha > 0 \) and \(\varsigma \in (0, \frac{1}{2}] \),
\[
\frac{\sqrt{N_T}}{T} \sum_{t=1}^{T-1} X_t \left(TV^{n-1}_t - \int_{t-1}^{t} \sigma^2 ds \right) \xrightarrow{p} 0, \quad \text{as } T \uparrow \infty, \Delta_n \downarrow 0, \quad (8.10)
\]

provided that \(\sqrt{N_T} \Delta_n^{(2-\beta)\alpha + 1/2 - \epsilon} \rightarrow 0 \), for the deterministic sequence \(N_T \uparrow \infty \) as \(T \uparrow \infty \) and \(\epsilon > 0 \) arbitrary small.

Proof: We make the identical decomposition of the difference
\[
\left(\left(\Delta_i^{n, t-1} \right)^2 \right)^{2} 1_{\{\Delta_i^{n, t-1} \leq a \Delta_n^p\}} = \int_{t-1}^{t-1+i \Delta_n} \sigma^2 ds
\]
as in Lemma 1. We denote the corresponding components in this decomposition for the high-frequency interval \([t + (i-1) \Delta_n, t + i \Delta_n] \) by \(a_i^n \), with each of the components denoted analogously. Then, using Holder’s inequality for some \(a > 1 \),
\[
\frac{1}{T-1} \sum_{t=1}^{T-1} X_t L_t \leq \left(\frac{1}{T-1} \sum_{t=1}^{T-1} |X_t|^a \right)^{1/a} \left(\frac{1}{T-1} \sum_{t=1}^{T-1} |L_t|^{a/(a-1)} \right)^{1-1/a},
\]

37
where $L_t = \sum_{i=1}^{n} a_{t,i}^j$, or the identical sum over their subcomponents. For the terms involving
$\tilde{a}_{t,i}^1$, $a_{t,i}^4$, $\tilde{a}_{t,i}^5$ and $a_{t,i}^{b0}(1)$, we can use $a = 2$, and show convergence to zero of \(\frac{N_T}{T} \sum_{t=1}^{T} |L_t|^2 \).
The latter follows from the bounds on the second moments of $\tilde{a}_{t,i}^1$, $a_{t,i}^4$, $\tilde{a}_{t,i}^5$ and $a_{t,i}^{b0}(1)$ derived in the
previous Lemma, and the fact that these terms form martingale difference sequences.

For the rest of the terms we can set set a arbitrarily large. \(\frac{1}{T} \sum_{t=1}^{T-1} |X_t|^a \) will be bounded in L_1 by the integrability assumptions on the processes σ_s and ϕ_s^\pm in A4. Asymptotic negligibility of
\(\frac{\Delta_{5/(a-1)}^n}{T-1} \sum_{t=1}^{T-1} |L_t|^{a/(a-1)} \) follows from the basic inequality \(\left(\sum_{i=1}^{N} |a_i| \right)^q \leq N^{q-1} \sum_{i=1}^{N} |a_i|^q \) for any $q > 1$, and the bounds derived in the previous Lemma for a sufficiently large.

\[\square \]

Lemma 3 Suppose we observe the process p_t at the discrete times $0, \Delta_n, 2\Delta_n, ..., [T/\Delta_n]$. Let $\varrho_T > 1$ be a deterministic sequence as a function of the time span T, such that $\varrho_T \uparrow \infty$ as $T \uparrow \infty$. Also, let $f_T(x)$ denote a function in x (changing with T) with the properties:

(a) $f_T(x) = 0$ for $x < \log(\varrho_T)$,

(b) $|f_T(x)| \leq C(x - \log(\varrho_T))$ and $|f_T'(x)| \leq C$ for $x \geq \log(\varrho_T)$,

and $f_T'(x)$ denotes the right derivative for $x = \log(\varrho_T)$. Then under assumption A1, with $\nu(x)$
nondecreasing for x sufficiently large, and assumption A4, we have

\[
\frac{1}{\sqrt{N_T}} \left(\sum_{i=1}^{[T/\Delta_n]} f_T(\Delta_{i}^n p) - \sum_{s \leq T} f_T(\Delta p_s) \right) \xrightarrow{p} 0, \quad \text{as } T \uparrow \infty, \; \Delta_n \downarrow 0,
\]

(8.11)

for $N_T = T \varrho^+ (\log(\varrho_T))$ and $\varrho^+(z) = \int_{z}^{\infty} x \nu(x) dx$, provided that for $\epsilon > 0$ arbitrary small

\[
\sqrt{N_T} \Delta_n^{-\epsilon} \left(1 \sqrt{\frac{\Delta_n}{\varrho^+(\log(\varrho_T))}} \right) \to 0, \quad \text{as } T \uparrow \infty, \; \Delta_n \downarrow 0.
\]

(8.12)

Proof: For the constant $K > 0$, denote

\[
p_t(K) = \int_{0}^{t} \alpha_s ds + \int_{0}^{t} \sigma_s dW_s + \int_{0}^{t} \int_{|x| < K} \kappa(x) \tilde{\mu}(ds, dx) + \int_{0}^{t} \int_{|x| < K} \kappa'(x) \mu(ds, dx).
\]

The proof goes through several steps.

Step 1. We start by showing that for any $s < t$ and $K \to \infty$,

\[
P \left(\sup_{s \leq u \leq t} \varphi_u^- + \sup_{s \leq u \leq t} \varphi_u^+ \geq K \right) \leq CK^{-q}, \quad \forall q > 0.
\]

Using the assumed dynamics for φ_u^\pm, we may write $\varphi_u^- - \varphi_s^+ = \int_{s}^{u} \alpha_v' dv + \int_{s}^{u} \sigma_v' dW_v + \int_{s}^{u} \sigma_v'' dB_v + \int_{s}^{u} \int_{\mathbb{R}^2} \kappa(\delta^+(v-, x)) \tilde{\mu}(ds, dx) + \int_{s}^{u} \int_{\mathbb{R}^2} \kappa'(\delta^+(v-, x)) \mu'(ds, dx)$. The result then follows by using the basic inequality $|\varphi_u^\pm| \leq |\varphi_s^\pm| + |\varphi_s^- - \varphi_s^+|$, the Burkholder-Davis-Gundy inequality, Chebychev’s inequality, and finally the integrability assumption on the process φ_T^\pm.

38
Step 2. We next show that for some constants K_0, $K_1 > 0$ and $\alpha < 1/\beta$,
\[
\mathbb{P} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \mu(ds, \, dx) \geq K_1 \right) \leq C \Delta_n^{(1-\alpha \beta - \epsilon)} [K_1], \quad \forall \epsilon > 0.
\]

We start by introducing the following sets that we will rely on later in the proof,
\[R_n = \{ x : |x| \geq K_0 \Delta_n^a \}, \quad S_n = \{ x : |x| \leq K_0 \Delta_n^a \}, \quad T_n = \{ x : K_0 \Delta_n^a \leq |x| \leq K_0 \} . \]

Using the representation of the jumps with the homogenous measure μ introduced in Lemma 1,
\[
\mathbb{P} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \mu(ds, \, dx) \geq K_1 \right)
= \mathbb{P} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \int_{x \in R_n} \left(1_{\{x < 0, \, u < \varphi^- \}} + 1_{\{x > 0, \, u < \varphi^+ \}} \right) \mu(ds, \, du, \, dx) \geq K_1 \right)
\leq \mathbb{P} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \int_{x \in R_n} 1_{\{u < \varphi^-\}} \mu(ds, \, du, \, dx) \geq K_1 \right)
+ \mathbb{P} \left(\sup_{s \in [(i-1)\Delta_n, \Delta_n]} \varphi^- \geq \Delta_n^{\epsilon} \right)
+ \mathbb{P} \left(\sup_{s \in [(i-1)\Delta_n, \Delta_n]} \varphi^+ \geq \Delta_n^{\epsilon} \right),
\]

where $\epsilon > 0$ is arbitrary small. For the second probability we can apply the result of Step 1.

For the first probability, we can use the fact that $\int_{(i-1)\Delta_n}^{i\Delta_n} \int_{x \in R_n} \mu(ds, \, du, \, dx)$ has a Poisson distribution with intensity $\Delta_n^{1-\epsilon} \int_{|x| \geq K_0 \Delta_n^a} \nu(x) \, dx$. Therefore,
\[
\mathbb{P} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \int_{0}^{\Delta_n^a} \int_{x \in R_n} \mu(ds, \, du, \, dx) \geq K_1 \right)
\leq C \Delta_n^{(1-\alpha)[K_1]} \left(\int_{|x| \geq K_0 \Delta_n^a} \nu(x) \, dx \right) [K_1]
\leq C \Delta_n^{(1-\beta \alpha - 2\epsilon)[K_1]},
\]

where we made use of the fact that $\int_{\mathbb{R}} (|x|^{\beta+\epsilon} \wedge 1) \nu(x) \, dx < \infty$ for ϵ arbitrary small.

Step 3. We will prove
\[
\mathbb{P} \left(\left| \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{|x| \leq K_0} \kappa(x) \tilde{\mu}(ds, \, dx) + \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{|x| \leq K_0} \kappa'(x) \mu(ds, \, dx) \right| \geq K_1 \right) \leq C \Delta_n^{[K_1/K_0] - \epsilon},
\]
for $\epsilon > 0$ sufficiently small. Again, relying on the representation of the jumps by the homogenous Poisson measure μ on an extended space with the extra dimension used for thinning, we have for Δ_n sufficiently small ($\kappa'(x)$ is zero for $|x|$ in some neighborhood of 0) and $0 < \alpha < 1/\beta$,
\[
\mathbb{P} \left(\left| \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{|x| \leq K_0} \kappa(x) \tilde{\mu}(ds, \, dx) + \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{|x| \leq K_0} \kappa'(x) \mu(ds, \, dx) \right| \geq K_1 \right)
\leq \mathbb{P} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \int_{x \in T_n} \kappa(x) \left(1_{\{x < 0, \, u < \varphi^- \}} + 1_{\{x > 0, \, u < \varphi^+ \}} \right) \tilde{\mu}(ds, \, du, \, dx)
\quad + \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{x \in T_n} \kappa'(x) \left(1_{\{x < 0, \, u < \varphi^- \}} + 1_{\{x > 0, \, u < \varphi^+ \}} \right) \mu(ds, \, du, \, dx) \geq \rho K_1 \right)
\quad + \mathbb{P} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \int_{x \in S_n} \kappa(x) \left(1_{\{x < 0, \, u < \varphi^- \}} + 1_{\{x > 0, \, u < \varphi^+ \}} \right) \tilde{\mu}(ds, \, du, \, dx) \geq (1 - \rho) K_1 \right),
\]

39
for any $\rho \in (0,1)$. For the second probability successive applications of the Burkholder-Davis-Gundy inequality and/or the elementary inequality $|\sum_i |a_i|^p| \leq \sum_i |a_i|^p$ for some $0 < p \leq 1$, together with the fact that $\int_{|x|\leq K_0\Delta_n} |\kappa(x)|^q \nu(x)dx \leq C\Delta_n^{q-\beta} |x|^\alpha \leq C\Delta_n^{q-\beta} \alpha$ for $q > \beta$ and $\varsigma > 0$ arbitrary small, imply that for any $q > \beta$,

$$
\mathbb{P}\left(\left| \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{\mathbb{R}^+} \int_{x \in S_n} \kappa(x) \left(1_{\{x<0, u<\varphi^-\}} + 1_{\{x>0, u<\varphi^+\}} \right) \mu(ds, du, dx) \right| \geq (1-\rho)K_1 \right) \leq C\Delta_n \int_{|x| \leq K_0\Delta_n} |\kappa(x)|^q \nu(x)dx + C\Delta_n^{q+1-\beta} \varsigma \leq C\Delta_n^{q-\beta} \alpha \varsigma, \quad \varsigma > 0,
$$

and some $z \in [0,1)$. For the first probability, following Step 3 we can split the integral with respect to the compensated measure into two parts, to conclude for Δ_n small,

$$
\mathbb{P}\left(\left| \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{\mathbb{R}^+} \int_{x \in T_n} \kappa(x) \left(1_{\{x<0, u<\varphi^-\}} + 1_{\{x>0, u<\varphi^+\}} \right) \mu(ds, du, dx) \right| \geq \rho K_1 \right) \leq \mathbb{P}\left(\left| \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{\mathbb{R}^+} \int_{x \in T_n} x \left(1_{\{x<0, u<\varphi^-\}} + 1_{\{x>0, u<\varphi^+\}} \right) \mu(ds, du, dx) \right| \geq \rho K_1 - C\Delta_n^{1-\alpha-\beta-\epsilon} \int_{(i-1)\Delta_n}^{i\Delta_n} (\varphi^- + \varphi^+)ds \right)
$$

where $\epsilon > 0$ is arbitrary small, and we made use of the result of Steps 1 and 2. The final part of the proof for this step then follows by applying the above two inequalities with ρ sufficiently close to 1, and α close to 0.

Step 4. Using the integrability assumptions on the processes α_t and σ_t, we have

$$
\mathbb{P}\left(\left| \int_{(i-1)\Delta_n}^{i\Delta_n} \alpha_s ds + \int_{(i-1)\Delta_n}^{i\Delta_n} \sigma_s dW_s \right| \geq K_1 \right) \leq C\Delta_n^q, \quad \forall q > 0.
$$

Step 5. Combining the results of Steps 1-5, it follows that for any $[K_1/K_0] > q$,

$$
\mathbb{P}\left(|\Delta_n^{\rho} p(K_0)| > K_1 \right) \leq C\Delta_n^{q-\epsilon}, \quad \forall \epsilon > 0.
$$

Step 6. For $\delta \in (0,1)$ with $\delta > 1/\theta T$, let $K > 0$ satisfy $K < |\log(\delta)|/3 \land \log(\delta/\theta T)$. Then,

$$
\mathbb{E}\left(\sum_{i=1}^{[T/\Delta_n]} f_T(\Delta_n^{\rho} p) - \sum_{(i-1)\Delta_n \leq s \leq i\Delta_n} f_T(\Delta p_s) \left| 1_{\{A_i\}} \right) \leq C T \Delta_n^{1-\epsilon}, \quad \forall \epsilon > 0,
$$

40
where $A_i = \{ \omega : \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{|x| \geq K} \mu(ds, dx) \geq 2 \}$. To prove this result, we first use the fact that

$$f_T(\Delta^np) \leq C|\Delta^np|, \quad \mathbb{E} \left(\sum_{(i-1)\Delta_n \leq s \leq i\Delta_n} |f_T(\Delta ps)| \right)^q \leq C\Delta_n \nu^+(\log(\sigma_T)), \quad q \geq 1.$$

The result of this step then follows readily from Holder’s inequality and the result of Step 2.

Step 7. For the same choices of δ and K used in Step 6, denote the set $B_i = \{ \omega : |\Delta^np(K)| \geq |\log(\delta)| \}$. Then as in Step 6, using the result of Step 5, we get

$$\mathbb{E} \left(\sum_{i=1}^{[T/\Delta_n]} \left| f_T(\Delta^np) - \sum_{(i-1)\Delta_n \leq s \leq i\Delta_n} f_T(\Delta ps) \right| 1_{(A_i^c, B_i)} \right) \leq CT\Delta_n.$$

Step 8. Let $C_i = \{ \omega : \exists s \in [(i-1)\Delta_n, i\Delta_n] : \Delta ps \geq \log(\rho_T) \}$ and $D_i = \{ \omega : \Delta^np \geq \log(\rho_T) \}$. We will show that for some arbitrary small $\epsilon > 0$

$$\mathbb{E} \left(\sum_{i=1}^{[T/\Delta_n]} \left| f_T(\Delta^np) - \sum_{(i-1)\Delta_n \leq s \leq i\Delta_n} f_T(\Delta ps) \right| 1_{(A_i^c, B_i^c, C_i^c, D_i)} \right) \leq C\Delta_n^{1/2-\epsilon} T^{\nu^+(\log(\rho_T))^{1-\epsilon}}.$$

On the set $A_i^c \cap B_i^c \cap C_i^c \cap D_i$, there is exactly one jump of size above K in absolute value, and its size must be in the interval $[\log(\delta\rho_T), \log(\rho_T)]$ (recall $\delta > 1/\rho_T$). Therefore, using the fact that $|f_T(x) - f_T(\log(\rho_T))| \leq C|x - \log(\rho_T)|$ for $x \geq \log(\rho_T)$ and $f_T(\log(\rho_T)) \leq C$, we have

$$\left| f_T(\Delta^np) - \sum_{(i-1)\Delta_n \leq s \leq i\Delta_n} f_T(\Delta ps) \right| 1_{(A_i^c, B_i^c, C_i^c, D_i)} \leq C|\Delta^np(K)| \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{\mathbb{R}} 1_{\{x \in [\log(\delta\rho_T), \log(\rho_T)]\}} \mu(ds, dx)$$

$$+ C \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{\mathbb{R}} (|\Delta^np(K)| \geq \log(\rho_T) - x, \ x \in [\log(\delta\rho_T), \log(\rho_T)]) \mu(ds, dx).$$

Note that in the last integral, the integrand is not adapted, but this does not matter as the integral with respect to μ is defined in the usual Riemann-Stieltjes sense. Now, using the representation of the jumps with respect to μ, we have for the first term on the right-hand side of (8.13),

$$\mathbb{E} \left(|\Delta^np(K)| \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{\mathbb{R}} 1_{\{x \in [\log(\delta\rho_T), \log(\rho_T)]\}} \mu(ds, dx) \right) \leq A_1 + A_2 + A_3 + C\Delta_n^q;$$

$$A_1 = \mathbb{E} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \alpha_s ds + \int_{(i-1)\Delta_n}^{i\Delta_n} \sigma_s dW_s \int_{(i-1)\Delta_n}^{i\Delta_n} \gamma(x) \left(1_{\{x < 0, u < \varphi^-_{s-1}\}} + 1_{\{x > 0, u < \varphi^+_{s-1}\}} \right) \tilde{\mu}(ds, du, dx) \right),$$

$$A_2 = \mathbb{E} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \int_{\mathbb{R}^+} \int_{|x| \leq K} \kappa(x) \left(1_{\{x < 0, u < \varphi^-_{s-1}\}} + 1_{\{x > 0, u < \varphi^+_{s-1}\}} \right) \tilde{\mu}(ds, du, dx) \right) \times \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{0}^{\Delta_n^{-t}} \int_{\{x \in [\log(\delta\rho_T), \log(\rho_T)]\}} \mu(ds, du, dx),$$

41
for some arbitrary small \(\epsilon > 0 \) and arbitrary big \(q > 0 \). Then for \(A_1 \) we can use Holder’s inequality. For \(A_2 \) we condition first on the filtration generated by \(\mu([0, \infty), x \in [\log(\delta_T), \log(q_T)]) \) and then apply Burkholder-Davis-Gundy inequality and Holder’s inequality. For \(A_3 \) we use the independence of the filtration generated by \(\mu([0, \infty), x \in [\log(\delta_T), \log(q_T)]) \) from that of \(\mu([0, \infty), x \leq K) \) (note that \(K < \log(\delta_T) \)). Altogether we get for \(\rho > 0 \) arbitrary small,

\[
\mathbb{E} \left(|\Delta_n^\rho p(K)| \int_{(1-\delta)\Delta_n}^{1} \sum_{x \leq K} \frac{1}{\log(q_T) - x}^{1-\rho} 1(x \in [\log(q_T), \log(q_T)]) \mu(ds, dx) \right) \leq C \Delta_n^{3/2-\rho} (\log(\delta_T))^{1-\rho}. \tag{8.15}
\]

Now, for the second term on the right hand-side of (8.13)

\[
\int_{(1-\delta)\Delta_n}^{1} \sum_{x \leq K} \frac{1}{\log(q_T) - x}^{1-\rho} 1(x \in [\log(q_T), \log(q_T)]) \mu(ds, dx)
\]

for arbitrary small \(\rho > 0 \). From here we can proceed exactly as in (8.15) upon using the following bound for any \(1 \leq \alpha < 1/(1-\rho) \),

\[
\mathbb{E} \left(\int_{(1-\delta)\Delta_n}^{1} \left(\frac{1}{\log(q_T) - x}^{1-\rho} 1(x \in [\log(q_T), \log(q_T)]) \mu(ds, dx) \right)^\alpha \right)
\]

\[
\leq C \Delta_n \int_{x \in [\log(q_T), \log(q_T)]} \left(\frac{1}{\log(q_T) - x}^{1-\rho} \nu(x) dx \right)^\alpha + C \Delta_n^{\alpha} \int_{x \in [\log(q_T), \log(q_T)]} \left(\frac{1}{\log(q_T) - x}^{1-\rho} \nu(x) dx \right),
\]

where for the first inequality we made use of the Burkholder-Davis-Gundy inequality, and for the second the restriction that \(\alpha < 1/(1-\rho) \) together with the fact that \(\nu(x) \) is non-increasing in the tails.

Step 9. In this step we show for some arbitrary small \(\epsilon > 0 \)

\[
\mathbb{E} \left(\int_{(1-\delta)\Delta_n}^{1} \left(f_T(\Delta_n^\rho p) - f_T(\Delta_n^\rho (K)) \right) \frac{1}{A_i^\rho, B_i^\rho, C_i, D_i^\rho} \right) \leq C \Delta_n^{1/2-\epsilon} T(\nu(\log(q_T)))^{1-\epsilon},
\]

On the set \(A_i^\rho \cap B_i^\rho \cap C_i \cap D_i^\rho \), there is exactly one jump of size above \(K \) in absolute value and its size must be in the interval \([\log(q_T), \log(q_T) - \log(\delta)] \). Then, using the fact that \(|f_T(x)| \leq C \) for \(x \in [\log(q_T), \log(q_T) - \log(\delta)] \) (\(C \) depends on \(\delta \), we have

\[
\left| f_T(\Delta_n^\rho p) - f_T(\Delta_n^\rho s) \right| 1_{A_i^\rho, B_i^\rho, C_i, D_i^\rho} \leq C \int_{(1-\delta)\Delta_n}^{1} \left(|\Delta_n^\rho K)| \geq x - \log(q_T), x \in [\log(q_T), \log(q_T) - \log(\delta)] \right) \mu(ds, dx).
\]

42
From here the result follows exactly as in Step 8.

Step 10. In the final step we show for arbitrary small $\epsilon > 0$

$$
\mathbb{E} \left(\sum_{i=1}^{[T/\Delta_n]} |f_T(\Delta_i^n p) - \sum_{(i-1)\Delta_n \leq s \leq i\Delta_n} f_T(\Delta p_s) 1_{\{A_i^c, B_i^c, C_i, D_i\}} | \leq C T \Delta_n^{1/2-\epsilon} \left(\mathbb{P}^+ (\log (\rho_T)) \right)^{1-\epsilon},
\right.

On the set $A_i^c \cap B_i^c \cap C_i \cap D_i$, we have only one jump of p above $\log (\rho_T)$. Therefore, since the function f_T is differentiable for values of the argument exceeding $\log (\rho_T)$, a first-order Taylor expansion together with the boundedness of the first derivative of f_T yields

$$
\left| f_T(\Delta_i^n p) - \sum_{(i-1)\Delta_n \leq s \leq i\Delta_n} f_T(\Delta p_s) 1_{\{A_i^c, B_i^c, C_i, D_i\}} \right| \leq C |\Delta_i^n p(\log (\rho_T))| 1_{\{A_i^c, B_i^c, C_i, D_i\}}.
$$

To continue further we introduce the following two sets,

$$
R_T = \{ x : |x| \geq \log (\rho_T) \} \quad \text{and} \quad S_T = \{ x : |x| \leq \log (\rho_T) \}.
$$

Using the alternative representation of the jumps with respect to μ, we have

$$
\mathbb{E} \left(\left| f_T(\Delta_i^n p) - \sum_{(i-1)\Delta_n \leq s \leq i\Delta_n} f_T(\Delta p_s) 1_{\{A_i^c, B_i^c, C_i, D_i\}} \right| \right)
\leq C \mathbb{E} \left(1_{\{A_i^c, B_i^c, C_i, D_i\}} |\Delta_i^n p(\log (\rho_T))| \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{u<\varphi_+ -} \int_{x \in R_T} \mu(ds,du,dx) \right)
\leq C \mathbb{E} \left(|\Delta_i^n p(\log (\rho_T))| \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{u<\varphi_+ -} \int_{x \in R_T} \mu(ds,du,dx) \right)
+ C \mathbb{E} \left(|\Delta_i^n p(\log (\rho_T))| 1_{\{\sup_{x \in [(i-1)\Delta_n,i\Delta_n]} \varphi_+ \geq \Delta_i^{n-1} \}} \right).
$$

Furthermore,

$$
\mathbb{E} \left(|\Delta_i^n p(\log (\rho_T))| \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{u<\varphi_+ -} \int_{x \in R_T} \mu(ds,du,dx) \right) \leq B_1 + B_2,
$$

where

$$
B_1 = C \mathbb{E} \left[\int_{(i-1)\Delta_n}^{i\Delta_n} (|\alpha_s| + \varphi_+ - + \varphi_-)ds + \int_{(i-1)\Delta_n}^{i\Delta_n} \sigma_s dW_s \right] \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{u<\varphi_+ -} \int_{x \in R_T} \mu(ds,du,dx),
$$

$$
B_2 = C \mathbb{E} \left[\int_{(i-1)\Delta_n}^{i\Delta_n} \int_{\mathbb{R}^+} \int_{x \in S_T} x \left(1_{x<0, u<\varphi_+ -} + 1_{x>0, u<\varphi_+ -} \right) \tilde{\mu}(ds,du,dx) \right. \\
\left. \times \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{u<\varphi_+ -} \int_{x \in R_T} \mu(ds,du,dx) \right].
$$

By Holder’s inequality and the integrability conditions for some arbitrary small $\zeta > 0$,

$$
B_1 \leq C \Delta_n^{3/2-\zeta} \left(\mathbb{P}^+ (\log (\rho_T)) \right)^{1-\zeta}.
$$
For the term B_2, we can condition on the filtration generated by the measure $\mu(\mathbb{R}^+, \mathbb{R}^+, x \in R_T)$, denoted with \mathcal{F}_t^x, and use the fact that the Poisson measure creates independent filtration on disjoint sets, see e.g., Sato (1999), to get by an application of the Burkholder-Davis-Gundy inequality, that

$$B_2 \leq CE \left[\int_{(i-1)\Delta_n}^{i\Delta_n} \mathbb{E}(\varphi^+_n + \varphi^-_n)|\mathcal{F}_t^x \vee \mathcal{F}_i(1)\Delta_n)ds \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{u<\Delta_n^*} \int_{x \in R_T} \mu(ds, du, dx) \right] \leq C\Delta_n^{1+1/2-2q}(\log(\varphi_T)) + B_3,$$

where

$$B_3 = CE \left(\mathbb{E} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} (\varphi^+_n + \varphi^-_n)ds \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{u<\Delta_n^*} \int_{x \in R_T} \mu(ds, du, dx) \right)^2 \right) \left| \mathcal{F}_t^x \vee \mathcal{F}_i(1)\Delta_n \right| \times 1_{\{\sup_{s \in ((i-1)\Delta_n, i)\Delta_n} \varphi^+_n \geq \Delta_n^* \}}.$$

It then follows by the Cauchy-Schwartz inequality that for any $q > 0$,

$$B_3 \leq C\Delta_n^{q/2} \mathbb{E} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} (\varphi^+_n + \varphi^-_n)ds \int_{(i-1)\Delta_n}^{i\Delta_n} \int_{u<\Delta_n^*} \int_{x \in R_T} \mu(ds, du, dx) \right)^2 \leq C\Delta_n^{q/2}.$$

Step 11. Combining the results of Steps 6-10, we get (8.11) provided condition (8.12) holds. □

Lemma 4 Suppose we observe the process μ_t at the discrete times $0, \Delta_n, ..., n\Delta_n, ..., t, t+\Delta_n, ..., t+n\Delta_n, ...$, and assume that assumptions A1, with $\nu(x)$ nondecreasing for x sufficiently large, and A4 hold. Then, for g_T and the function f_T defined in Lemma 3, and provided (8.12) holds,

$$\frac{1}{\sqrt{N_T}} \sum_{i=1}^{T-1} \left(\sum_{i=1}^{n} f_T(\Delta^{n,i}_t p) - \sum_{s=t}^{t+1} f_T(\Delta^{n,s}_t p) \right) TV^n_{t-1} \xrightarrow{P} 0, \quad \text{as } T \uparrow \infty, \; \Delta_n \downarrow 0. \quad (8.16)$$

Proof: We can proceed exactly as in the proof of Lemma 2, using the result in Lemma 3. We only need that $\mathbb{E}|TV^n_{t-1}|^q < \infty$ for arbitrary $q > 0$. But, this follows from the fact that by successive conditioning and application of Holder’s inequality, $\mathbb{E} \left(\int_{\Delta^{n,i}_t p}^{\Delta^{n,j}_t p} |\Delta^{n,i}_t p|^q \int_{\Delta^{n,i}_t p}^{\Delta^{n,j}_t p} |\Delta^{n,i}_t p|^q \right) \leq C\Delta_n^{q-k-\epsilon}$, for k an integer, $\epsilon > 0$ arbitrary small, distinct i_j for $j = 1, ..., k$, and $q_j \geq 2$ for $j = 1, ..., k$. □

Proofs of Theorem 3 and Corollary 2. The proofs will follow from the proof of Theorem 1 and Corollary 1 if we can show

$$\sup_{\theta \in \Theta_T} \sqrt{M_T^+ ||\hat{g}_T(\theta, g_T) - g_T(\theta, g_T)||} \xrightarrow{P} 0,$$

where $\hat{g}_T(\theta, g_T)$ is defined by substituting $\int_{\Delta^{n,i}_t p}^{\Delta^{n,j}_t p} \phi^+_i(\psi(x) - g_T, \theta(1), \theta(2)) \mu(ds, dx)$ in place of $\sum_{j=1}^{n} \phi^+_i(\psi(\Delta^{n,i}_t p) - g_T, \theta(1), \theta(2)) 1 \left(\psi(\Delta^{n,i}_t p) > g_T \right)$ in $g_T(\theta, g_T)$ for $i = 1, 2$ and $t = 0, ..., T - 1$, and in the case of Corollary 1, $\int_{t-1}^{t} \sigma^2 ds$ is also replaced by TV^n_{t-1} for $t = 1, ..., T$. But, this result follows directly from Lemmas 2 and 4, as the conditions on the function f_T are satisfied by the score functions ϕ^+_i when evaluated at the large jumps on the set $\theta \in \Theta_T$. □
References

2010-03: Jesper Rangvid, Maik Schmeling and Andreas Schrimpf: Cash Flow-Predictability: Still Going Strong

2010-04: Helle Bunzel and Walter Enders: The Taylor Rule and “Opportunistic” Monetary Policy

2010-05: Martin M. Andreasen: Non-linear DSGE Models and The Optimized Particle Filter

2010-06: Søren Johansen and Bent Nielsen: Discussion of The Forward Search: Theory and Data Analysis by Anthony C. Atkinson, Marco Riani, and Andrea Ceroli

2010-08: Peter R. Hansen and Asger Lunde: Estimating the Persistence and the Autocorrelation Function of a Time Series that is Measured with Error

2010-09: Tom Engsted, Thomas Q. Pedersen and Carsten Tanggaard: Pitfalls in VAR based return decompositions: A clarification

2010-10: Torben G. Andersen and Luca Benzoni: Stochastic Volatility

2010-11: Torben B. Rasmussen: Affine Bond Pricing with a Mixture Distribution for Interest Rate Time-Series Dynamics

2010-13: Peter Reinhard Hansen, Zhuo (Albert) Huang and Howard Howan Shek: Realized GARCH: Complete Model of Returns and Realized Measures of Volatility

2010-14: Bent Jesper Christensen and Michel van der Wel: An Asset Pricing Approach to Testing General Term Structure Models including Heath-Jarrow-Morton Specifications and Affine Subclasses

2010-15: Nektarios Aslanidis and Charlotte Christiansen: Smooth Transition Patterns in the Realized Stock Bond Correlation

2010-16: Tim Bollerslev and Viktor Todorov: Estimation of Jump Tails